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1
Introduction

Oral and maxillofacial surgery, is often planned using 2D and 3D diagnostic images of
the teeth, mandible and other facial structures [1]. The common 2D imaging modality
in dental surgery are X-ray photos[2]. Three dimensional imaging such as computed
tomography (CT) is often only available for advanced surgery in hospitals. Cone
beam computed tomography (CBCT) is a high resolution, low cost alternative to CT
[3]. CBCT is based on 2D X-ray projections, and has a lower dose than conventional
CT [4], and therefore may become the imaging technique for oral and maxillofacial
surgery.

The mandible is the lower-jaw bone, which is the largest and strongest bone of
the face. It is a complex bone, which serves for the reception of the lower teeth, and
also contains channels with blood vessels and nerves. The nerves give sensation to the
lower-lip, tongue and teeth. It is important in dental implantology and wisdom teeth
removal to plan a safety margin around the facial nerves [5]. Because impairment of
the channels containing the nerves can traumatize, crush or completely cut the nerve.
Damaged mandibular nerves often recover in about three to six months, because axons
slowly regenerate [6]. If after a year recovery has not occurred the nerve damage is
likely to be permanent. The incidence of damage during the removal of wisdom teeth
has been reported in the range of 5% [6] [7].

The inferior alveolar nerve running through the mandibular canal is the third
branch of the trigeminal nerve. The three parts of the trigeminal nucleus in the brain
receive different types of sensory information, pain, temperature and touch. Therefore
damage to the mandibular nerve can cause pain, or permanent loss of tactile sensation
of the lower lip and chin [5].

In this thesis we focus on extracting the mandibular canal from cone beam CT,
which will allow the planning of safety margins around the nerve. Exact localization

1



2 CHAPTER 1. INTRODUCTION

of the mandibular nerve canal in CBCT data is highly challenging, because CBCT
has a lower dose and thus a higher noise to signal ratio than conventional CT [8].

This introduction continues with background information to support the topics of
the thesis. In the next section, Section 1.1 we present an short overview about the
mandible and its surroundings. Followed by section 1.2, about the change in shape
of the mandible due to age. Then we focus in section 1.3, on the background of the
Mandibular canal, which is the main topic of our research. The data used in this
thesis are Cone-Beam CT scans, thus we give a short overview in Section 1.4. Section
1.5 and Section 1.6 present the research objectives and outline of this thesis.

1.1 Mandible

The mandible1 is the lower-jaw bone of the face. It consist of three parts, the body,
which is the central curved horizontal part, and the rami which are located at both
ends of the body and are vertical quadrilateral shaped parts of the bone. See figure
1.1. The tooth bearing part of the body is called alveolar process, and the corner
between ramus and body, is called angle.

During the third and fourth week of pregnancy the first pharyngeal arch develops
[9]. It grows outwards from the two sides left and right and as two processes, a lower
(mandibular) part and an upper (maxillary) process, figure 1.2. The place where
the two pieces of mandibular bone fuse together is called the symphysis menti. The
symphysis menti which is shaped as a ridge, which divides near the bottom of the
mandible, enclosing a small triangle shaped area, the mental protuberance.

At the top of the ramus there is a triangular shaped protuberance, called the
coronoid process where the temporalis muscle attaches. The ramus also has a round
prominence called the condyle, which makes the temporomandibular joint with the
temporal bone.

The mandible contains cancellous bone which has a structure as in a sponge [10],
making it light but strong.

The mental foramina are two tear shaped holes at both sides of the mandible
close to the mental protuberance. The holes permits the passage of blood vessels and
the mental nerve, a trunk of inferior alveolar nerve. The inferior alveolar nerve runs
through the mandibular canal and enters through the mandibular foramen which is
a hole at the inner aspect of the mandible at the middle of the ramus.

The mandible connects to the temporal and zygomatic bone (or zygomatic process)
by ligaments: the temporomandibular ligament, the sphenomandibular ligament, the
stylomandibular ligament and the articular capsule containing the articular disc, fig-
ure 1.3. The movements permitted by the ligaments are large, the mandible may be
depressed or elevated, moved forward or backward, and even a small amount of side
to side movement is possible.

The mandible contains many muscle attachments 1.4 [11]. The two major muscles
are the masseter and temporalis muscle. The masseter is a thick quadrilateral shaped

1We use the Terminologia Anatomica, which is the international standard for anatomical nomen-
clature.
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Figure 1.1 The mandible, outer surface side view.
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Figure 1.2 Development of human embryo head (ventral view) in the third week
[12].

muscle, consisting of two parts, the superficial and the deep part. The superficial part
is attached to the zygomatic process of the maxilla, and to a part of the lower body
of the zygomatic arch, and connects to the lower half of the lateral surface of the
ramus of the mandible. The deep portion is smaller and attached to the zygomatich
arch and connects into the upper half of the ramus and the lateral surface of the
coronoid process. The temporalis muscle attaches to the temporal bone of the skull
and connects to the coronoid process of the mandible.
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(a) (b) (c)

Figure 1.3 Ligaments of the mandible . The Images are from ”Gray’s Anatomy of
the Human Body”.

1.2 Ageing

At the symphysis menti the two segments of the mandibular bone fuse, upwards from
below. In the beginning of the second year of a newborn there may be still a trace of
separation visible.

In the first years the body of the mandible becomes elongated in length, to provide
the space for teeth to develop, see figure 1.5. Also the depth of the body increases due
to grow of the alveolar part, which will contain the root of the teeth to be developed
in the future [13].

In an adult the alveolar and subdental part of the body are almost always equal
in depth. The ramus is almost vertical in most adults. With the mental foramen at
the height of the depth center line of the body.

In old age, the mandible changes due to teeth loss and subsequent absorbtion of
the alveolar process [14]. As a result, the position of the mental foramen is close to
the alveolar border.

1.3 The Mandibular Canal

Inside the mandible there is a small canal called the mandibular canal, containing
the inferior alveolar bundle (nerve, artery and vein) [15]. The canal starts at the
mandibular foramen, a small hole in the ramus, and runs to the mental foramen,
a small hole close to the mental protuberance, see figure 1.6. The average canal
diameter found literature, range from 2.0mm− 2.4mm in one study, up to 5.0mm in
another study[16]. The average length of the mandibular canal in our 13 CBCT scans
is 70mm, see chapter 10. The mandibular canal is normally located using panoramic
radiographs, which show for 99% [17] of all patients a single canal in each side of the
mandible. But new studies done with cone beam CT, show bifid canals for almost all
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(a) (b)

(c) (d)

Figure 1.4 The mandibular muscles. The Images are from ”Gray’s Anatomy of the
Human Body”.
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(a) (b)

(c) (d)

Figure 1.5 Aging of the mandible. Mandible of a newborn (a), of a child (b), of
a adult (c), and of elderly person (d). The Images are from ”Gray’s Anatomy of the
Human Body”.

patients, for instance 28 findings in the mandible sides of 18 patients [15]. Bifid canals
often branch from the main mandibular canal, and can contain branches of the inferior
alveolar nerves, artery and vein. The diameter of the bifid canals are almost always
smaller than the mandibular canal, and can range in length from 0.14 to 2.45cm [18].
There are four types of bifid mandibular canals: forward canal, retromolar canal,
dental canal, and buccolingual canal [18]. A retromolar bifid canal runs to an area
close to the ramus before the molars, a dental canal runs to the roots of the second
and third molars. The forward canal arising from the superior wall of the mandibular
running to the second molar region. The buccolingual canal is a bifid canal which
arises from the buccal or lingual wall of the mandibular canal.

1.4 Cone Beam CT Data

Cone beam computed tomography (CBCT) is a type of three dimensional computed
tomography (CT).

Today multi-slice helical CT (MSCT) scanners are commonly used in hospitals.
The outside of a MSCT scanner contains a tube through which the patient who is
positioned on a table, is moved. Around the tube there is a wheel spinning with X-ray
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Figure 1.6 The mandibular canal inside the mandible.

Figure 1.7 Bifid canals: a retro molar canal, a dental canal and a forward canal.
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detectors and opposite to the detectors and X-ray source. In an multi-slice system
up to 320 rows of X-ray detectors are used [19], with up to 912 detectors in one row.
X-rays are produced in a flat fan-shaped pattern, which projects through the patient
onto the detectors. To reconstruct a CT slice we need projection data from a full
rotation of the source and detectors in the plane of the slice. But during scanning the
table moves, resulting in helical projection data. Thus interpolation and rebinning
[20] is needed before an image volume can be reconstructed.

CBCT is closely related to normal radiography. Instead of using rows of X-ray
detectors, it uses a flat panel X-ray imaging device [8] , and not a flat fan-shaped
pattern but a cone shaped X-ray beam. This is the same setup as used for standard
2D X-ray photos. To reconstruct a 3D volume we need X-ray images from multiple
angles. For this reason, the source and detector-plate are mounted at opposite sides
of an curved shaped metal bar. This bar rotates while, the head or other body part
of a patient is positioned in between the detector and X-ray source.

CBCT has several advantages in comparison to helical CT scanners. Efficient
sampling without the need for rebinning is the main advantage. All the data in one
2D projection of a CBCT scan has a single time instance, thus allowing efficient gated
imaging and less respiratory motion artifacts than in multi-slice CT. The cost of a
CBCT scanner is much lower than a CT scanner and also the device is smaller thus
more suitable for dentists. Main disadvantage of CBCT is that areas with the same
bone tissue do no result in the same Hounsfield unit, due to non-uniformity of X-
ray illumination and scattering. Because CBCT has a high scatter-to-primary (SPR)
ratio, which is caused by the use of a wide cone-beam [8]. A CBCT scan has a much
lower total X-ray dose (13 to 82 µSv) than multi-slice CT (474 to 1160 µSv) [21]. The
low dose is good for the patient but is also a disadvantage, because a lower dose results
in more noise, lower dynamic range and lower image quality in the reconstruction.

The standard method for 3D reconstruction from cone-beam projections is the
Feldkamp-Davis-Kreiss (FDK) algorithm [22]. This is a 3D generalization of 2D fan
beam filtered back projection. This is a fast and robust reconstruction algorithm, but
requires a large number of projections. After reconstruction with FDK, the image
often contains streak artifacts. These streak artifacts are caused by materials which
totally block X-ray such as metal implants, beam hardening and scatter. There are
more advanced algorithms appearing which rely on optimizers to reconstruct the
image volumes with well-defined boundary conditions and fewer artifacts. But those
iterative algorithms are slow because a 3D volume contains a large number of voxels
thus a large number of unknowns values. Therefore also a large number of approaches
have appeared which are extensions of FDK [23] aiming to reduce artifacts and noise.

1.5 Research Objective

The aim of our research is to develop an automatic system for the extraction of the
mandibular canal from CBCT data. This system allows the creation of an safety
margin around the canal in case of dental implant surgery. To achieve this objective,
we address the following research questions
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Figure 1.8 Cone-beam CT for dental applications.

• Is it possible to get high enough accuracy and robustness to replace human
annotation of the mandibular canal in surgery planning?

• Is it possible to accurately extract the mandibular canal from CBCT only based
on intensities, or is shape information from a training set needed?

• Which of the three approaches is more suitable for extraction of the mandibu-
lar canal, an active shape model, active appearance model or an atlas based
registration method?

• What is a suitable method to get corresponding points between patient CBCT
data sets of the mandible?

• Does adding edge enhancing filtering of the CBCT data as pre-processing step,
increase the accuracy in mandibular canal localization?

Our conclusions and recommendations with respect to these questions are discussed
in Chapter 11
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1.6 Outline

Chapter 2, ”Overview of mandibular canal segmentation methods”, gives an overview
of existing automated and automatic methods for mandibular canal segmentation in
literature. In Chapter 3, ”Diffusion Filtering”, we describe a method for anisotropic
diffusion filtering with optimized rotational invariance, to reduce the noise in the
CBCT data. In Chapter 4, ”Nerve Tracking”, a method based on Lukas Kanade[24]
template tracking is introduced, for automatic extraction of the mandibular canal
based on intensities. In Chapter 5, ”Active Shape Model”, the active shape model
and active appearance model approach of Cootes et al. [25][26] based on princi-
pal component analysis of corresponding points is introduced, and implementation
details are explained. In Chapter 6, ”Demon Registration”, and Chapter 7, ”B-
spline Registration”, image registration methods are introduced which can be used
for atlas-registration based extraction of the mandibular canal, and as a way to find
corresponding points between mandibles of several patients. In Chapter 8 ”Shape
Context Registration”, we describe a robust method for finding corresponding points
between object surfaces. Chapter 9 ”Minimum Description Length”, gives a method
to improve the quality of an active shape, model. In Chapter 10 ”Results”, we eval-
uate the segmentation performance of the introduced methods. The performance is
tested on segmentation of the mandible and mandibular canals from CBCT. Finally
in Chapter 11, ”Conclusion”, we give our conclusions, recommendations, and answers
on the research questions.



2
Mandibular Canal Segmentation Literature

The first step after formulating research goals to solve a certain problem, is always
searching for existing solutions to the problem. In this chapter we show an overview of
existing methods for mandibular canal segmentation. The first section describes the
literature search The second section gives an overview of methods found in literature.
Followed by a section discussing the current methods in use.

2.1 Literature Search

We will use a number of public databases to construct a list of methods in litera-
ture to segment the mandibular canal in CBCT data. The first, PubMed, comprises
more than 20 million citations for biomedical literature from Medline, life science
journals, and online books (http://www.ncbi.nlm.nih.gov/pubmed). We also used web
of knowledge from Thomson Reuters (apps.isiknowledge.com). The third database
we use is Elsevier’s Science Direct (http://www.sciencedirect.com/). To get a more
comprehensive list, we also use the cross-references of the retrieved literature, and
use ”cited by” search engines, (www.scopus.com) from ScienceDirect and CiteSeerx
(http://citeseerx.ist.psu.edu) We have used the following key-words: mandibular
canal, segmentation, extraction, automatic, cone-beam ct, computed tomography,
inferior alveolar nerve. (Last updated 27-06-2011)

2.2 Literature Overview

1998 ”Tracing of thin tubular structures in computer tomographic data”, by Stein
et al. [27]. They propose a mandibular canal detection algorithm based on

11
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Dijkstra’s algorithm, which is used on CT scans. Followed by a balloon snake
(deformable model) to subtract boundaries of the mandibular canal. They limit
the Dijkstra’s search, by a series of erosions and dilations to only trace inside
the bone. User interaction is limited to identification of a start and end-point.

2004a ”Nerves - level sets for interactive 3d segmentation of nerve channels”, by
Hanssen et al. [28] . This method improves on the method of Stein. Instead
of using the basic Dijkstra’s algorithm, fast marching is used which gives more
accurate distance results for image volumes. The balloon snake to extract the
boundaries of the mandibular canal is replaced by a geodesic active surface
computed with level sets. User interaction is needed to identify the start and
end-point of the mandibular canal.

2004b ”Computer-based extraction of the inferior alveolar nerve canal in 3D space.”
Kondo et al. [29]. This method first computes panoramic CT images from the
CT data. Therefore first the mandible is segmented from the volume data by a
threshold, followed by hole filling, and user based selection of the mandible from
the remaining image objects. The mandibular canal is then roughly segmented
using image gradients, into a binary volume. The canal is then extracted using
some binary mask based line-tracking method. The method is tested on two
samples. Results give an approximately mean distance to expert labeling of the
canal of around 0.7 voxels, with a STD of 0.7 voxels. The distance errors are in
the range of half a millimeter.

2006 ”Automatic segmentation of jaw tissues in CT using active appearance mod-
els and semi-automatic landmarking”, by Rueda et al. [30]. This method is
based on a 2D active appearance model. The model is constructed from manual
annotation of the boundaries of the mandibular canal, bone and nerve. The
segmentation accuracy is a mean distance of 4.7mm for the dental nerve and
3.4mm to expert labeling of the mandibular canal.

2006 ”Automatic detection of inferior alveolar nerve canals on CT images”, Sotthivi-
rat et al. [31] propose a canals segmentation method, based on 2-D panoramic
images. By using morphological opening, closing and edge detection operations,
the canal is found in these images. The 2-D panoramic images are constructed
from manual selected points on the centerline of the mandible in a slice of the
CT data. The method is tested on one data set and only successfully extracted
a part of the mandibular canal.

2008 ”An adaptive region growing method to segment inferior alveolar nerve canal
from 3D medical images for dental implant surgery”, by Yau et al. [32], first re-
slices the image volume, to a kind of panoramic image volume. Then an initial
point is selected by the user inside the canal, followed by local region growing
and automatic selection of a new initial point for region growing. The whole
mandibular canal is iteratively extracted.

2009 ”Automatic Extraction of Mandibular Nerve and Bone from Cone-Beam CT
Data”, by Kainmueller et al. [33]. The method is based on segmenting the
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mandible using an active shape model (ASM), which is constructed, from 106
clinical data sets. A training data set is first manually decomposed into 8
patches, and then an automatic method is used to find the surface correspon-
dences needed to build an ASM, see [34]. The mandibular canal is included in
the PCA model, but only to get an initial position of the canal after ASM based
bone segmentation. Thus the canal is ASM segmentation is not driven by image
features but only by the shape constraints. The actual mandibular canal seg-
mentation is done by a Dijkstra’s algorithm based optimization method. This
method tries to find the darkest tunnel close to the initial position of the canal
found, which was obtained with the PCA model. The method gives accurate re-
sult but has difficulty in precisely detecting the canal path near the canal ends.
The right nerve can be detected with an average error of 1.0mm and standard
deviation of 0.6mm, the left nerve 1.20mm and deviation of 0.90mm

2011”Automatic extraction of inferior alveolar nerve canal using feature-enhancing
panoramic volume rendering”, Kim et al. [35]. First the CT data is rendered us-
ing a 3-D panoramic volume rendering algorithm. This rendering algorithm uses
texture features to enhance the mental foramens. The path of the mandibular
canal is then computed using a line-tracking algorithm. Fast Marching is used
with a new speed function to extract the whole region of the mandibular canal.
The new speed term is introduced for stopping the front from evolving outward
at both openings at the side of the canal and near the foramens. Average time
required to process one data set is 13s. The proposed method is tested on 10
CBCT data sets and has a mean distance to expert segmentation of 0.73mm
and STD of 0.69mm

2.3 Discussion

In the previous section we introduce eight papers on semi-automatic segmentation
of the mandibular canal. Commonly used methods often use a pre-processing step
with shortest path methods such as fast marching or Dijkstra’s algorithm. To detect
the mandibular canal, the assumption is made that the canal contains low intensities
surrounded by a boundary of voxels with high Hounsfield values. A speed map can
then be constructed with the speed inversely related to intensity. Thus the shortest
path is through the black tunnel of the mandibular canal.

We have tested some of the common methods from literature to see which show
potential for our CBCT data. The first fast marching on our CBCT data, took often
shortcuts outside our mandibular canal. This is because our canals have not a distinct
contrast with the surroundings, probably due to a low X-ray dose. Also the boundary
of the bone is not always present or visible in our CBCT data sets. We have also
tested the region-growing segmentation method, but missing edge segments resulted
into leakage outside the canal.
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Our CBCT data contains mandibular canals with missing edges. Also the canals
have no lower intensities than the surrounding cancellous bone. Thus we probably
have to include a priori shape-information into our segmentation. This can be done by
using an ASM or AAM method. These models are trained using manually segmented
data sets, as done by Kainmueller et al. [33]. Another way to introduce a priori
information about shape and appearance is atlas-registration.

Both atlas registration, ASM and AAM based mandibular canal extraction algo-
rithms will be developed and evaluated in this research.



3
Diffusion Filtering1

3.1 Introduction

Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modal-
ity for dental surgery planning [36], due to the low hardware cost and high resolution
images at a relative low radiation dose. For the surgical planning of implants, the
mandibular nerve canals have to be segmented. In these scans the mandibular nerve
canals are hardly visible. In implant placement, the segmentation is used to guard the
safety margin around the canals during surgery. CBCT scanners have a relatively low
radiation dose [36] thus the small mandibular canal is characterized by low contrast
in a noisy image, see figure 3.1. Which gives us the problem to find a method to
improve image contrast in CBCT scans for small structures.

Currently the best way to improve contrast in a CT image is to apply iterative re-
construction methods with regularization to suppress streak-artifacts and to improve
smoothness in uniform regions [37]. In practice, standard CBCT systems do not pro-
vide the required raw-scanner data for this approach. Therefore post reconstruction
noise filtering is the practical method to improve image quality. A medical image is
often assumed to have piecewise smooth regions with noise, separated by sharp edges.
There are many methods available in the literature to denoise such an image [38], in
this chapter we focus on edge enhancing diffusion filtering.

1This chapter is based on the following publications:

i) D.J. Kroon et al. ”Optimized Anisotropic Rotational Invariant Diffusion Scheme on Cone-Beam
CT”, MICCAI, 2010

ii) D.J. Kroon et al. ”Coherence Filtering to Enhance the Mandibular Canal in Cone-Beam CT
Data”, IEEE-EMBS, 2009

15



16 CHAPTER 3. DIFFUSION FILTERING

(a) (b)

Figure 3.1 Isosurface rendering of the jaw, with overlay of the mandibular canals
(a). Slice of panoramic transformed high quality CBCT scan showing the mandibular
canal (b).

Linear diffusion equals Gaussian filtering in which the diffusion time controls the
smoothing scale. To preserve the edges, Perona-Malik introduced regularized non-
linear diffusion (RPM) [39]. Edge preservation is achieved by lowering the scalar
diffusion constant in the neighborhood of steep edges. This method results in piece-
wise smooth regions, however, image edges remain noisy. Instead of using a scalar
diffusion constant, a tensor can be used to adapt the diffusion to the underlying im-
age structure. So we smooth with small elongated kernels along edges, and Gaussian
like kernels in uniform regions. The tensor can be constructed in two ways, as a
coherence-enhancing diffusion (CED) [40] or as an edge-enhancing diffusion (EED).
Recently the CED and EED algorithms are combined in an hybrid diffusion filter
with a continuous switch (HDCS) [41]. If the local image structure is tubular HDCS
switches to CED and if it is planar it switches to EED.

This chapter will focus on the discretization schemes of the anisotropic diffusion
tensor. We will evaluate the performance of the standard discretization scheme and
the rotational invariant scheme of Weickert [42], and introduce a new scheme in which
optimal filtering kernels are constructed using numerical optimization.

This chapter is organized as following. In the section two we introduce the dif-
fusion filtering algorithm and discretization schemes. The new optimized scheme is
introduced in the third section. Followed by, an evaluation of the diffusion schemes
on synthetic and real images. The final section gives the discussion and conclusions.

3.2 Diffusion Filtering

Anisotropic diffusion filtering is an iterative edge preserving smoothing method. It
describes the local image structure using a structure tensor also referred to as the
”second-moment matrix”, for details see [40]. This descriptor is transformed into a
diffusion tensor D. The diffusion equation is commonly written in an iterative forward
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difference approximation [42]:

∂u

∂t
= ∇ · (D∇u) ⇒ uk+1

∼= uk + τ (∇ · (D∇u)) (3.1)

Where u (u = u(t, x, y, z)) is the image, x, y, z the pixel coordinates and t the diffusion
time. In the discrete function, τ the time step-size and k the number of the iteration.
The eigenvectors of the diffusion tensor D are set equal to the eigenvectors v1,v2,v3

with v1 = [v11, v12, v13] of the structure tensor (note the symmetry):

D =

 D11 D12 D13

D12 D22 D23

D13 D23 D33

 with Di j =
∑
n=1..3

λn vn i vn j (3.2)

The eigenvalues of the diffusion tensor are λ1, λ2, λ3 . Because our CBCT scans
contain planar and tubular structures as well, we choose to use HDCS [41], with
switches between CED and EED eigenvalues depending on the local image structure .
When using the diffusion tensor for plane enhancing diffusion (EED), the eigenvalues
are set to:

λe1 =

{
1, (|∇uσ|2 = 0)

1− exp
(

−C
(|∇uσ|2/λ2

e)
4

)
(|∇uσ|2 > 0)

, λe2 = 1 , λe3 = 1 (3.3)

With uσ the image smoothed with a Gaussian kernel of σ, and λe the planar struc-
ture contrast parameter. In case of tube enhancing diffusion (CED) the eigenvalues
are set to:

λc1 = α , λc2 = α , λc3 =

{
1, (|∇uσ|2 = 0)

α− (1− α) exp
(
− log(2)λ2

c

(µ2/(α+µ3))4

)
(|∇uσ|2 > 0)

(3.4)

With λc the tube-like structure contrast parameter, and α = 0.001. The Hybrid
diffusion with continuous switch, combines the CED and EED eigenvalues depending
on the image structure. The weight between CED and EED eigenvalues is determined
by the value ε :

λhi = (1− ε)λci + ελei (3.5)

When the structure tensor has two large eigenvalues, the image structure is planar,
and can be best filtered with EED. When there is only one large eigenvalue, the image
structure is tube like, and can be best filtered with CED. This can be measured with
the ξ equation below:

ξ =

(
µ1

α+ µ2
− µ2

α+ µ3

)
(3.6)

With µ the eigenvalues of the structure tensor, and α = 0.001. In case of a plate like
structure ξ >> 0, with a tubular structure ξ << 0, and if the eigenvalues are equal
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as in a homogeneous or blob-like region ξ = 0 . The epsilon value which switches
between CED and EED is written as:

ε = exp
µ2(λ2

h(ξ − |ξ|)− 2µ3

2λ4
h

(3.7)

Which contains a contrast parameter λh, setting a soft threshold between the eigen-
values of a small structure and noise.

3.3 Discretization Schemes

We can write the divergence operator equation 3.1 in 3D as:

∇ · (D∇u) = ∂xj1 + ∂yj2 + ∂zj3 (3.8)

With j1, j2, j3 the flux components which are described by:

j1 = D11 (∂xu) +D12 (∂yu) +D13 (∂zu) (3.9)

j2 = D12 (∂xu) +D22 (∂yu) +D23 (∂zu)

j3 = D13 (∂xu) +D23 (∂yu) +D33 (∂zu)

For the standard discretization of the divergence operator central differences are
used:

∂x (D11 (∂xu)) =
1

2

(
D11(i+1,j,k)

u(i+1,j,k) − u(i,j,k)

2

−D11(i−1,j,k)

u(i+1,j,k) − u(i,j,k)

2

) (3.10)

∂y (D12 (∂xu)) =
1

2

(
D12(i,j+1,k)

u(i+1,j+1,k) − u(i−1,j+1,k)

2

−D12(i,j−1,k)

u(i+1,j−1,k) − u(i−1,j−1,k)

2

) (3.11)

The other terms are written in the same way [43], and are combined to a pixel-
location dependent 3× 3 or 3× 3× 3 convolution stencil. Non-negative discretization
makes the modification that stencil elements remain positive for various gray values.
Rotation invariant anisotropic diffusion is important with curved like structures such
as the mandibular canal. Weickert [42] showed that larger stencils than 3×3 (2D) are
needed to fix the number of degrees of freedom to allow rotation invariance. This is
achieved by implementing the equations 3.8 and 3.9, with Scharr’s rotational invariant
3 × 3 filters for the image derivatives ∂x and ∂y, resulting in an rotational invariant
implicit 5× 5 stencil.
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3.4 Optimized Scheme

Another way to write the divergence operator using the product rule [44] is:

∇ · (D∇u) = div(D)∇u+ trace(D(∇∇Tu)) (3.12)

We obtain for the divergence part of the equation:

div(D)∇u =(∂xu)(∂xD11 + ∂yD12 + ∂zD13)

+(∂yu)(∂xD12 + ∂yD22 + ∂zD23)

+(∂zu)(∂xD13 + ∂yD23 + ∂zD33)

(3.13)

We write the Hessian part of the equation as:

trace(D(∇∇Tu)) = (∂xxu)D11 + (∂yyu)D22 + (∂zzu)D33

+2(∂xyu)D12 + 2(∂xzu)D13 + 2(∂yzu)D23

(3.14)

Equation 3.13 is discretized using 3 × 3 × 3 derivative kernels, and the Hessian of
equation 3.14 with a 5× 5× 5 second derivative kernel. In 2D the spatial kernels can
be written as:

Mxx =


p1 p2 p3 p2 p1

p4 p5 p6 p5 p4

−p7 −p8 −p9 −p8 −p7

p4 p5 p6 p5 p4

p1 p2 p3 p2 p1

 (3.15)

Mxy =


p10 p11 0 −p11 −p10

p11 p12 0 −p12 −p11

0 0 0 0 0
−p11 −p12 0 p12 p11

−p10 −p11 0 p11 p10

 (3.16)

Mx =

 p13 p14 p13

0 0 0
−p13 −p14 −p13

 (3.17)

The kernel values p = [p1, p2..., p14] can be found analytically or by numerical
optimization. We choose numerical optimization, because it can optimize the whole
process, while analytical derivation is only feasible for separate parts of the process,
with simplifications such as ignoring numerical round of effects. We optimize the
diffusion kernel using the following cost function:

e = arg min
p

(ef (p) + βeg(p)) (3.18)

This function finds a balance between the edge orientation invariant filtering perfor-
mance ef , and isotropic diffusion performance eg, with weight constant β. With the
first term ef we want to find the best edge enhancement for edges with several ori-
entations and spatial frequencies. Therefore we use the difference between an image
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with circles of varying spatial frequencies without noise I, and an image with Gaus-
sian noise added Inoise, which is diffusion filtered (see figure 3.3). With F (Inoise,p)
the diffusion filtering of the image with noise using kernel values p:

ef (p) =
∑
x

|F (Inoise,p)− I|, with I = sin(x2 + y2) (3.19)

With the second term eg we want to achieve Gaussian like diffusion in uniform regions.
We use an image Ipoint which is zero except the center pixel equal to one. The term
eg is set to the difference between the isotropic noise filtered image Ipoint and a least
squares fitted Gaussian kernel with sigma a. We set both diffusion tensor eigenvalues
to one, corresponding to a uniform region.

eg(p) = arg min
a

∑
x

(
F (Ipoint,p)− 1

π
√
a

exp (−|x|2/a)

)2

(3.20)

We use the Matlab Nelder-Mead Simplex minimizer [45] because it is robust
against local minima. Also a quasi-Newton minimizer is used [46], because the min-
imizer has a high convergence speed. We use 10 iterations of the Simplex Method
followed by minimizing until convergence with the quasi Newton optimizer. This is
done iteratively until the simplex method also converges. Parameters used for the
circle image are, size 255×255, τ = 0.1, iterations 5, σ = 1, ρ = 10, CED eigenvalues,
Gaussian noise variance 0.1, and x and y coordinates in the range [−10, 10]. The
parameters of Ipoint are image size 51 × 51 and 5 iterations, constant β = 200. The
computed kernel values p are:

0.008 0.049 0.032 0.038 0.111 0.448 0.081
0.334 0.937 0.001 0.028 0.194 0.006 0.948

It is important to note that the scheme is optimized for rotational invariance, but
that the derivative kernels are not rotational invariant, for instance Mx approximates
a central difference instead of a Scharr like kernel.

In 3D the approach is the same; a spherical function in an image volume is used,
with 33 instead of 14 unknown kernel variables. The optimized kernels are available
in our open source diffusion toolbox2

3.5 Evaluation

We evaluate the properties of the standard, rotation and optimized diffusion scheme
with respect to three image based criteria. The first is noise removal in uniform
regions, the second preservation and enhancement of image edges independent of
rotation and size. The final test is the combined filtering performance on a real
CBCT data set.

In this first test we look at noise smoothing in uniform regions. To do this we
use the image Ipoint introduced in the optimization section, with the same filtering
parameters and 100 iterations.

2The open source diffusion code, http://www.mathworks.com/matlabcentral/fileexchange/25449
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(a) (b) (c) (d) (e) (f)

Figure 3.2 Uniform diffusion of a pixel with standard discretization (a), rotation
invariant (c), optimized scheme (e). Sub figures (b), (d) and (f ) show the difference
between the image result and least squares fitted 2D Gaussian function. The values
in (b) are in the order of 1 · 10−5, (d) in the order of 1 · 10−2 and (f ) in the order of
1 · 10−4.

(a) (b) (c) (d)

Figure 3.3 The sub figures show the test image (a), after diffusion with the stan-
dard scheme (b), with the rotational invariant scheme (c), and the optimized scheme
(d).

Figure 3.2 shows the image results and difference between a least squares fitted
Gaussian 2D function and the diffusion result. Ideal uniform diffusion is equal to
Gaussian filtering, thus the standard diffusion and the optimized scheme perform
well. The rotation invariant result does not look like a Gaussian. This is because the
scheme is based on Sobel like derivative kernels, which do not use the local pixel value
but only the neighboring values.

In the second test we look at rotation invariant edge enhancement, using the circle
image with Gaussian noise Inoise, the same parameters as in the optimization section
and 100 iterations. Figure 3.3 shows that only the rotational invariant and optimized
scheme are edge orientation independent. The rotational invariant scheme suffers from
checkerboard artifacts due to the Scharr derivative kernels which only use neighbor
pixels and not the current pixel.

The final test is performed on 8 CBCT preprocessed human-head data sets of
400 × 400 × 551 voxels. The preprocessing consist of clustering the data sets in to
three intensity classes background, tissue and bone, using bias field corrected fuzzy
clustering [47], which is robust to streak artifacts. The resulting image data serves as
ground truth for the edges. The edges are detected by applying a threshold on the
gradient magnitude. Uniform regions are defined as the voxels which are at least six
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(a) (b) (c) (d) (e)

Figure 3.4 Small part of HDCS filtered bone structure, ground truth (a), Gaussian
noise added (b), standard scheme (c), rotation invariant (d) and optimized scheme
(e).

Table 3.1 This table shows the amount of high spatial frequencies after diffusion
filtering. Therefore the diffusion filtering results are Gaussian smoothed, and sum of
squared differences between Gaussian smoothed original filtering results are shown.
Results of standard and optimized diffusion scheme.

Edge Uniform region
data set unfiltered optimized standard unfiltered optimized standard

1 6.2 · 104 2.0 · 104 1.1 · 103 4.6 · 104 1.6 · 103 7.6
2 6.6 · 104 2.1 · 104 1.5 · 103 4.7 · 104 1.2 · 103 6.7
3 6.4 · 104 2.1 · 104 1.2 · 103 4.6 · 104 1.4 · 103 6.5
4 6.5 · 104 2.0 · 104 1.5 · 103 4.7 · 104 1.2 · 103 6.2
5 6.9 · 104 2.3 · 104 1.3 · 103 4.6 · 104 1.5 · 103 6.9
6 6.7 · 104 2.6 · 104 2.0 · 103 4.5 · 104 2.2 · 103 9.9
7 7.0 · 104 2.2 · 104 1.5 · 103 4.7 · 104 1.3 · 103 6.8
8 6.4 · 104 2.2 · 104 1.3 · 103 4.6 · 104 1.4 · 103 6.7

voxels away from an edge. Finally Gaussian noise of variance 0.01 is added to the
image data. The image data is filtered with the standard and the optimized scheme
using HDCS eigenvalues, with parameters σ = 0.5, ρ = 2, τ = 0.15, HDCS parameters
λe = 30, λh = 30, λc = 15 and 26 iterations, see figure 3.4.

We compare the performance between the standard and the optimized diffusion
scheme. The summed squared pixel distance between Gaussian low pass filtered and
original diffusion results, is used as a performance value. A steep edge contains high
frequencies which will be removed by the low pass filter, resulting in a large pixel
distance. In uniform regions, high frequency noise will also be removed, thus a large
pixel distance is a sign of noise which is not removed by the diffusion filtering. We
calculate the amount of high frequencies for the edge pixels and for the uniform regions
after filtering. The results are shown in table 3.1. The standard scheme gives the
best smoothing performance for uniform regions, with a 200 times smaller distance
compared to the optimized scheme. This is because the optimized scheme preserved
the edges of some random noise structures. The same noise structures are also visible
in the rotation invariant scheme in image 3.4. In the HDCS eigenvalues there is a
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(a) (b) (c) (d)

Figure 3.5 Small part of HDCS filtered scan (a), mandibular canal (arrow) , stan-
dard scheme (b), rotation invariant (c) and optimized scheme (d). The optimized
scheme better preserves the original edges and image structure.

threshold value λh to separate between noise and a image structures. But in this
case the signal to noise ratio is too low to allow a good separation between noise and
real image structures. Also on the real object edges the optimized scheme gives the
highest pixel distance. This can be due to remaining noise on the edges or due to a
steeper image edge than with the standard scheme. Figure 3.4 shows that this high
value is not caused by noise, but due to the more pronounced image edges.

Finally we show the filtering results of all schemes on an CBCT scan which is
transformed to make the jaw flat, see figure 3.5. The optimized scheme gives the best
enhancement and preservation of the mandibular canal.

3.6 Conclusion

The introduced 2D/3D anisotropic diffusion scheme shows better edge enhancement
in our synthetic and CBCT data, compared to the standard and the rotation invariant
scheme. Filtering is Gaussian in uniform image regions without checkerboard arti-
facts. The results show that the better edge preservation also causes noise structures
above a certain threshold to be preserved; this will be a problem with CBCT scans
containing pronounced streak artifacts. The cause of the problem is not the optimal
scheme, but has to be solved by a better separation between noise edges and real
edges in the diffusion tensor construction part.
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4
Nerve Tracking

4.1 Introduction

Information about the location of the mandibular canal is essential in case of dental
surgery [48], because entering the canal space during implant placement can damage
the inferior alveolar nerve or blood vessels. Cone beam CT (CBCT) is becoming
an increasingly utilized imaging modality in dental examinations, with a factor of
ten lower dose than conventional CT [36]. The goal of our research is to find an
automatic method which can segment the mandibular canal in CBCT, to allow an
accurate safety margin during surgery planning.

Our data set of CBCT scans are from the department of oral and maxillofacial
surgery, Radboud university Nijmegen medical centre, the Netherlands. The data set
contains images of patients which have lost teeth or/and have metal implants, see
figure 4.2. After loss of natural teeth, rapid bone deterioration starts because of the
lack of physical stimulation of the jawbone in that area.

The literature describes several methods to segment, automatically or user as-
sisted, the mandibular canal in CT. Methods based on fast marching shortest path
tracing [28], region growing [32] and segmentation methods based on image gradients
[29]. We have tested these methods on our CBCT data, however, all fail because
of low contrast between canal and surrounding tissue, high noise and missing edges
(figure 4.1).

Better suitable for CBCT are the texture and shape based models, such as the
active appearance model (AAM) of Rueda et al. [30]. AAM models are constructed
from corresponding points between data sets. The AAM requires that the location of
a single corresponding point must Gaussian distribution between the subjects. Our
data consist of males and females, dentate and edentate people, thus there is no

25
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Gaussian distribution of surface shapes.

In 1981 Lucas-Kanade (LK) introduced an image alignment technique based on
minimizing the sum of squared errors between a template and an image. This method
was used by others to do template tracking of cars in traffic movies [24].

In this thesis we use a modified LK template tracking method to track the
mandibular canal in our CBCT scan. The main idea is to sample the volume scan in
slices perpendicular to the mandibular canal. The user then selects a window around
the canal in one slice and this is used as a template to find the canal in the neighboring
frames, until the whole length of the mandibular canal is traced.

The first section describes the tracking algorithm, the second section the re-slicing
to movie frames of the CBCT scan. Followed by the results and finally the conclusions.

Figure 4.1 Mandibular canal visibility in a scan-slice, comparison of CT (left)and
CBCT (right).

Figure 4.2 Volume rendering of patients in the data set. The figure shows a young
patient with braces and an older patient which had surgery because of severe bone
erosion.
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4.2 LK Template Tracking

The LK algorithm minimizes the sum of squared differences (SSD) between the tem-
plate image T and the image I, minimizing:∑

x

[I(W(x; p))− T (x)]2 (4.1)

With W(x; p) the warping equation of the pixel coordinates x = (x, y) in the tem-
plate. With warp parameters p = [p1, p2, .., pn] with n = 6 incase of an affine warp.
The LK algorithm assumes that a current estimate of p is known and iteratively solves
for increments ∆p of the parameters.

We will use the inverse additive LK algorithm of Hager and Belhumeur [49], in
which the role of template and image are switched allowing more pre-calculations
and less iterative calculations. The SSD equation (4.1) is linearized with a first order
Taylor expansion: ∑

x

[
I(W(x; p)) +∇I ∂W

∂p
∆p− T (x)

]2

(4.2)

The inverse algorithm assumes that the initial warp parameters p are close to
the optimal warp parameters. Therefore I(W(x; p)) ≈ T (x) , with ∇I ∂W∂p ≈ ∇T .

Inverting ∂W
∂p and changing ∆p into −∆p completes the change of role of template

and image. This gives the goal of the additive inverse LK algorithm:

∑
x

[
T (x) +∇T

(
∂W

∂x

)−1
∂W

∂p
∆p− I(W(x; p)))

]2

(4.3)

In case of affine warping we can write the product of the two Jacobian’s as:(
∂W

∂x

)−1
∂W

∂p
= Γ(x)Σ(p) (4.4)

Γ(x) =

(
x 0 y 0 1 0
0 x 0 y 0 1

)
(4.5)

With Σ(p) an affine warp matrix controlled by parameters p.
The equations needed to calculate the inverse LK tracking are given below, their

derivation can be found in Baker et al. [24].
The modified Hessian:

H∗ =
∑
x

[∇TΓ(x)]
T

[∇TΓ(x] (4.6)

The iterative parameter update ∆p :

∆p = Σ(p)−1∆p∗

∆p∗ = H−1
∗
∑

x [∇TΓ(x)]
T

[I(W(x; p))− T (x)]
(4.7)



28 CHAPTER 4. NERVE TRACKING

The inverse of the affine warping Σ(p):

Σ(p)−1 =


1+p1 p3 0 0 0 0
p2 1+p4 0 0 0 0
0 0 1+p1 p3 0 0
0 0 p2 1+p4 0 0
0 0 0 0 1+p1 p3

0 0 0 0 p2 1+p4

 (4.8)

The inverse LK method is implemented as [24]:
Pre-compute
(1) Evaluate the gradient ∇T of the template T (x)
(2) Evaluate Γ(x)
(3) Compute the six steepest descent images ∇TΓ(x)
(4) Compute the modified Hessian H∗
Iterate
(5) Warp I with W (x; p) to compute I(W (x; p))
(6) Compute the error image I(W (x; p))− T (x)
(7) compute

∑
x[∇TΓ(x)]T [I(W (x; p))− T (x)]

(8) Compute ∆p∗
(9) Compute Σ(p)−1 and update

W (x; p)← p− Σ(p)−1∆p∗
until ‖∆p‖ ≤ ε

The gradient of the template ∇T is calculated by convolving a large template with
the derivatives of a Gaussian kernel, and crop to the wanted template size afterwards.
For noise robustness we use a large sigma σl to calculated the template gradients for
the first few iterations ns, and then a smaller sigma σs.

Schreiber [50] added weights to the equations to have control over the influence
of every pixel in the template, giving template pixels which contain background less
influence. He calculates the error between template and pixels of LK tracking result,
and uses the median of the error distribution to measure reliability. Adding the
weights ω(x) changes equation 4.6 and 4.7 to:

H∗ =
∑
x

ω(x) [∇TΓ(x)]
T

[∇TΓ(x)] (4.9)

∆p∗ = H−1
∗

∑
x

ω(x) [∇TΓ(x)]
T

[I(W(x; p))− T (x)] (4.10)

Because the robust estimator of Schreiber did not classify our pixels correctly as
background or foreground, we set the weight matrix ω(x) ∈ [0, 1] to,

ω(x) = 1−
√
‖x‖
d

(4.11)

assuming a circular mandibular channel, and d the distance from center to the farthest
border location of our template.
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The appearance of an object changes in time. Thus the template needs to be
updated during tracking with the found object images Rn to keep representing the
followed object. A disadvantage of template updating is that small errors in the found
position parameters p will cause the template to drift away from the original object.
Matthews et al. [51] solution was to align the updated template every tracking it-
eration with the original template, in order to stay on track. We have investigated
this approach but the appearance of the mandibular changes too much to allow aline-
ment of the first template onto the updated templates. Instead we assume that the
template center intensities vary less than edge pixels, and use this information in the
template update:

Tn+1(x) = Tn(x)

(
1− ‖x‖

2

d2

)
+
‖x‖2

d2
Rn(x) (4.12)

4.3 Sampling of the Mandible

Experts in dentistry are used to diagnose panoramic X-rays of the full mouth, also
called orthopantomograms (OPG). For this reason most modern CT dental software
support flattening of the jaw in the CT-data through re-sampling, creating a volume
with a maximum intensity projection (MIP) which looks like a panoramic X-ray. We
created an automatic re-sampling method, consisting of the following steps (figure
4.4):

(1) Apply an intensity threshold to keep only the bone
(2) Make a depth image, with the distances from the bottom to

the nearest bone voxels above the bottom.
(3) Calculate the median (like) distance of the front part of the

depth image
(4) Gaussian filter the depth image. Apply an threshold to get

the depth values above the median depth value of step 3. This
will create an image with only the jawline

(5) Find the center of the jawline for every image row
(6) Smooth, make the sampling uniform and extrapolate the cen-

ter line using a spline function
(7) Define the outer and inner jaw line using a fixed distance from

the center line.
(8) Use the outer and inner centerline as x, y re-sampling coor-

dinates.

Recently a paper was published by Akhoondali et al. [52] which uses a similar
approach for automatic panoramic re-slicing.

The flat jaw volume allows the user to select a region of the mandibular canal as
template, see 4.3. The appearance of the canal changes from a circle to an ellipsoid in
the slices because the canal is still curved in the z-direction. Therefore we do not use
the panoramic slices as movie frames, but sample slices perpendicular to the canal
in the original volume during tracking. Every iteration, a fixed step is done in the
direction of the channel.
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Figure 4.3 Sampled slices through the mandible in CBCT data. Also shown is the
LK template. All pixels outside the green box are not part of the template, but used
to calculate the image derivatives.

Figure 4.4 Jaw depth map and re-sampling of the scan.

The needed normal and direction of the canal is calculated using current and a
number np of previous canal positions . It is also possible to find the normal by
rotating the sampled slice until the difference between template and sampled slice
is minimal. But that approach is less robust to image noise. The canal normal
calculated from the previous positions still allows in plane rotation of the frame.
Thus we penalize the distance between new and old corner points of the sampled slice
to fix the in-plane rotation.

4.4 Results

Our data set consist of seven CBCT scans from the department of oral and maxillo-
facial surgery, Radboud university Nijmegen medical centre, with a voxel resolution
of 0.4mm. We re-slice the data sets to a panoramic volume and manually segmented
the narrow part of the mandibular canal using pixel selection in a slice view.

Secondly we selected starting points in the center of the mandibular canals for
every scan, using the panoramic slice view. We choose a fixed template size with a
size of 14 × 14, and add a boundary of five pixels for reliable template derivatives.
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Figure 4.5 MIP with tracking result overlay.

Figure 4.6 Difference between manual segmentation and tracking results. In this
case only small implants can be used because the distance between contour and canal
is small.

The tracing was done in the original CBCT scan volumes, using the image derivative
parameters, σl = 1.5, σs = 0.7 and ns = 3, for calculating the normal we use np = 7.
These parameters where found experimentally. The noise and the small template size
caused the affine tracking to be unreliable, thus we switch for the final results to only
translation transformation.

To measure the performance, we use the distance between the points in the manual
segmentation and the closest points in the tracking results. The distance between
automatic and manual segmented canal segments of all seven scans is in the order of
two pixels, 1.47 pixels 0.6mm for the data set shown in figure 4.6 . The maximum
distance between manual segmentation and tracking result is often 3mm or more at
the ends due to drift. The drift is caused by template updating, missing edges and
molar teeth touching the channel.



32 CHAPTER 4. NERVE TRACKING

4.5 Conclusions and Recommendations

We propose a method for automatic mandibular canal segmentation for Cone Beam
CT scans, based on Lucas Kanade template tracking. The pixel based methods in
the literature are not usable on these CBCT scans because of the high noise and low
contrast in the scan data.

Template tracking sampling slices perpendicular to the mandibular canal, give
accurate localization results for the center part of the canal. The method fails at the
end points of the mandibular canal, because it suffers from drift. This drift in the
template update is caused by invisible edges, touching structures and lag in position
and normal because of the use of previous points to calculate them.

Possible solutions for these drift problems are, edge enhancement and denoising
by using coherence enhancing filtering, see chapter 3 , using more user-selected points
to guide the tracking, or use some sort of template backtracking.

But because of missing edges, there is a need to introduce a priori information,
such as a probability atlas of the mandibular canal position. Therefore there is a need
to establish some reference framework, based on stable features of the mandible, such
as the bottom part which suffers less from bone erosion.



5
Active Shape Model

5.1 Introduction

This chapter describes the active shape models (ASM) [25] and active appearance
models (AAM) [26], of Cootes and Taylor. We extend these models to 3D, and
introduce enhancements for more accurate segmentation results. The next section
describes some background on segmentation, followed by a section about learning
shapes with an ASM. The fourth section adds intensity information to the ASM. The
fifth section describes the segmentation process of an ASM model. The sixth and
seventh sections describe the AAM which not only models the object shape as in an
ASM but also models the texture. The eighth section describes the extension to 3D,
and also other extensions which improve the accuracy and robustness of the models.
The ninth section gives test results of the extended models on a set of 2D hand photos
and 3D mandibles. With finally the conclusions.

5.2 Background

An image consists of a matrix of values which represent appearance properties of the
captured objects. Most medical images consist of piecewise uniform gray level regions
representing the captured objects. The objects in the images are separated by image-
edges, and the images are distorted with image noise. An object is easy to segment
if there is a high contrast between object and background, or when the object has
sharp image edges. In that case basic segmentation tools as a gray value threshold,
clustering or region-growing like algorithms can be used.

But in most realistic cases an object consist of multiple sub-objects made of several

33
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(a) (b) (c)

Figure 5.1 MRI image (a). The gray matter in this image is easy to segment
because it has sharp edges and uniform regions. CBCT image of the maxilla (b).
The maxilla has missing edges and no uniform gray value. Manual annotation of the
maxilla, based on gray values but also on a priori knowledge of the expert about the
usual shape of a maxilla (c).

materials, each showing their own gray value. For instance a human bone contains
spongy bone, periosteum and compact bone. All those materials have a different
Hounsfield unit [53] and texture thus different gray values in CT data. It is also
possible that there is no edge between two objects because they contain the same
material or different materials but showing the same gray value. Then there are
also problems like illumination differences, partial volume effect and reconstruction
artifacts.

Priori knowledge has to be included in the segmentation algorithm, to segment
difficult image objects such as the maxilla in CBCT data (figure 5.1 ). Most biomedi-
cal objects are smooth, thus many algorithms for general segmentation purposes use a
smoothness constraint on the boundary of the segmentation. Commonly used meth-
ods are active contours (snakes) [54] [55] and level-set methods [56]. These methods
give good result in case of missing edges and noisy regions. It is also possible to in-
clude appearance information such as gray level and texture to the a priori knowledge.
Examples are template-matching or atlas registration algorithms [57]. A disadvantage
of these methods is that a simple smooth constraint is only a small part of the known
shape knowledge, and a registration atlas only contains one example of the possible
shape. Therefore we will focus in this chapter on the active shape models (ASM)
[25] and active appearance models (AAM) [26], of Cootes and Taylor. These segmen-
tation algorithms are trained using example images with manually drawn contours.
They learn the mean object shape and variances of the object shape using principal
component analysis (PCA) [58]. This shape model is used during segmentation, to
constrain the segmentation. Only segmentation shapes are allowed which are possible
with a Gaussian distribution assumption of the training data. Thus if the height of
a contour varies between training photos, it will be allowed to take a value between
two or three times the standard deviation of the training data during segmentation.
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5.3 Shape Model Construction

The first step to build an ASM model of a simple object is to draw a contour line
around the object in al training images. The next step is to create n corresponding
landmark points on the object boundaries, this is commonly done by manual annota-
tion. Then there is often a shape alignment step, which removes translation, rotation
and size differences between the training images. The aligned (x, y) positions of the
landmark points in one data set are then grouped into a column vector:

x1 = (x1, x2, .., xn, y1, y2, .., yn)
T

(5.1)

The position vectors of all s training contours are then grouped into one matrix:

X = (x1,x2, ..,xs) (5.2)

PCA is then applied to the shape vectors in X. This can be done in two ways. The
first method. Compute the mean shape:

x̄ =
1

s

s∑
i=1

xi (5.3)

Construct the covariance matrix:

S =
1

s− 1

s∑
i=1

(xi − x̄) (xi − x̄)
T

(5.4)

Calculate the eigenvalues: λ = (λ1, λ2, ..λn) and corresponding eigenvectors Φ =
(v1,v2, ..vn). This equation applies:

Svi = λivi (5.5)

The second method is to use singular value decomposition. First normalize the vec-
tors:

ẋi =
1√
n− 1

(xi − x̄) (5.6)

Combine the vectors in a matrix:

Ẋ = (ẋ1, ẋ2, .., ẋn) (5.7)

Singular value decomposition of the matrix Ẋ:

Ẋ = ΦsΣV
T (5.8)

Σ is an m × n diagonal matrix with nonnegative real numbers on the diagonal and

V is an n× n unitary matrix. The eigenvalues are λ =
(

Σ2
(1,1),Σ

2
(2,2), ..,Σ

2
(n,n)

)
and

Φs a unitary matrix containing the eigenvectors. The number of training data sets is
often (very) small in comparison to the number of landmarks. Leading to a singular
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correlation matrix, and over fitting of the training data. To reduce over fitting effects
the next step is cropping the number of eigenvalues to t, keeping 90% or 99.5% of the
variance in the training data. This is done by removing the lowest eigenvalues and
corresponding eigenvectors.

Now we have obtained a shape model, which can convert any example contour
to model parameters. Reducing a large number of contour landmarks x to a small
number of parameters bs:

bs = ΦTs (x− x̄) (5.9)

These model parameters can be converted back to contour coordinates by:

x̃ = x̄ + Φsbs (5.10)

The new contour coordinates x̃ is an estimate of the original contour x. We constrain
b to the range ±m

√
λi with m between 2 and 3. This constraint will allow only shapes

estimates which are possible within 2 or 3 standard deviations of the distribution of
shapes in the training data.

5.4 Appearance Model Construction

The above described shape model does not generate segmentation contours, but only
serves as a shape-constraint on an existing contour. To segment an image we also
need a method to produce estimations of the object boundary in the image. Therefore
we need to include an appearance part into our ASM.

The method of Cootes and Taylor [25], starts with calculation of the normal vectors
of all the contour landmarks. Then k evenly spaced points are sampled along the
normal both in negative and positive direction. This results in a, gray profile s with
length 2k + 1 for every landmark point in a data set. Then the first order derivative
is calculated for the gray profile:

g(i) = s(i+ 2)− s(i) with i = 1, 2.., 2k − 1 (5.11)

This is normalized by:

g(i) =
1

l
g(i) with l =

2k−1∑
i=1

g(i) (5.12)

A landmark has a gray profile g1,g2, ..,gn in all n data sets. The mean ḡ and
covariance matrix Sg can be calculate for the gray profiles. This covariance matrix
can be used to make a cost function based on the Mahalanobis distance:

f(gi) = (gi − ḡ)TS−1
g (gi − ḡ) (5.13)

This cost function represents the distance of a new profile gi to the Gaussian distri-
bution of the sampled profiles in the training data.
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5.5 Active Shape Model Search

The ASM search process can be described by the following steps (see figure 5.2):

1. Position the mean object shape close to the object in the image

2. Sample long gray profiles on the contour normals

3. Search on the long gray profile for a line piece with length 2k + 1, with the
lowest Mahalanobis distance.

4. Move every point to the center of the line piece with the lowest Mahalanobis
distance.

5. Convert the x, y positions into normalized coordinates x , and convert them into
model parameters bs, and limit the model parameters to the range ±m

√
λi

6. Convert the model parameters bs back to normalized contour positions x, and
convert them back to x, y positions.

7. Go to step 2, until the movement is smaller than a certain threshold or until
the maximum number of iterations is reached.

This search method only works if the initial contour is close enough to the object
contour to be segmented. Also it can get stuck on other structures due to local
minima. To solve these problems, a multi-scale approach is used, in which two or
more appearance-models are constructed for low to high image resolutions. First the
ASM search is run on a low-resolution image until convergence, then the resolution is
doubled and the next appearance model is used, and finally the original resolution is
used. This will make the ASM search more robust and will speed up the convergence.

5.6 Active Appearance Model

An active appearance model (AAM) [26] is an extension to an active shape model.
Instead of only learning the shape variations also appearance is included in the PCA
model. This is done with the following steps:

1. Construct an ASM of the training data

2. Warp the image data of all training sets to the mean object shape.

3. Re-sample the warped training data into column vectors.

4. Perform PCA on the warped image data.

5. Combine the shape and appearance models into one PCA model
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(a) (b) (c)

(d) (e)

Figure 5.2 ASM search process. Initial landmark positions (a). Long search profiles
sampled on contour normals (b). Search for line piece with smallest Mahalanobis
distance to training profiles (c). Move landmark points to center of line piece with
lowest Mahalanobis distance (d). Map the x,y points to model coordinates, constrain
them to be within 3 standard deviations from the training shapes, and transform
them back to x,y positions (e)

When the ASM of the training data is constructed also the mean contour shape x̄ is
obtained. Warping the data sets to the mean shape x̄ is usually done by creating a
Delaunay triangulation of the mean shape x̄, resulting in a list of vertices n× 2 and
a list of faces m× 3 with vertex indices. The warping of a data set can then be done
by using, image Ii as texture, the contour points xi as texture vertices, and the mean
shape contour points x̄ as position vertices. Then rasterisation algorithms such as
available in openGL or directX can warp the image. Most rasterisation algorithms
use barycentric coordinates to calculate the texture coordinates for the pixels inside
the triangulated object. The texture coordinates can be used with linear or cubic
interpolation to sample the texture image.

The first step before resampling is discretization of the mean-contour lines to pixels
in an binary image, followed by a flood-fill. The pixel coordinates Lx = (x1, x2, ..xn)
and Ly = (y1, y2, ..yn) of the object pixels are then shaped in to a location vector
L = (LTx , L

T
y ). This location vector can be used to create column vectors gim of

training images which are warped to the mean shape. Because training images often
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have illumination differences, we normalize gim by applying a scaling α, and offset β.

g =
(gim − β)

α
(5.14)

We set α equal to the standard deviation and β to the mean of gim.
By applying PCA on the appearance data, we obtain:

bg = ΦTa (g − ḡ) (5.15)

with ḡ the mean appearance data and Φg the reduced eigenvectors. These model
parameters bg can be converted back to contour coordinates by:

g̃ = ḡ + Φabg (5.16)

Now we have obtained both model parameters bs for the shape and bg for the ap-
pearance. Shape and appearance are often correlated, thus we can combine them,
and reduce the combined models with PCA. Combining is done by:

b =

(
Wsbs

bg

)
(5.17)

With Ws a diagonal matrix which changes the weight of the shape model param-
eters. This is needed to make the effect on the RMS change of appearance of a small
change in a shape parameter bs(i) approximately equal to the effect of a small change
in an appearance parameter bg(i). To do this we displace each element of bs from
its optimum value in each training example and sample the image give the displaced
shape. The RMS change in g per unit change in shape parameter bs give the weight
Ws.
After applying PCA on the model vector b as done on the shape and appearance
data, we obtain:

c = ΦTsa(b− b̄) (5.18)

with b̄ the combined shape appearance parameters and Φsa the reduced eigenvectors.
These model parameters c can be converted back to the combined shape appearance
parameters b by:

b̃ = b̄ + Φsac (5.19)

5.7 Active Appearance Model Search

The AAM model contains a PCA model of the appearance of the object. This means
that if we have some initial model parameters c, we can use them to synthesize a model
image Im using the learned information. If we now warp the image data of a test
image with initial contour to the mean shape, we obtain an image Ii. The difference
δI between the model image Im and segmented image Ii gives a measure of correctness
of the current contour. We can vary the model parameters to minimize the magnitude
of the difference ∆ = |δI|2. A good contour produces a segmentation image similar
to the model image of that contour, resulting in a low intensity difference.
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Thus we try to minimize the intensity difference by changing the contour shape and
position. The shape is described by model parameters c and pose parameters t and
s. With t = tx, ty the translations in x and y direction, and s = sx, sy a combination
of scaling and rotation. The parameters can be combined in AAM model parameters
p with p = [c‖t‖s] . The scaling rotation parameters sx, sy are related to the contour
scale s sand rotation r by:

s =
√
s2
x + s2

y and r = 2 arctan

√
s2
x + s2

y − sx
sy

(5.20)

Using finite differences to minimize the intensity difference ∆ for a test image, will
require a large number of image warps and matrix calculations. Instead we try to
find a direct linear relationship between the difference vector δI and required model
parameter update δp during training.

Let us say we have a model appearance vector gm, and an appearance vector go
from an almost aligned segmentation contour. Then we can define a difference vector
r:

r(p) = (gm − go) (5.21)

We can describe the local neighborhood of r on the current parameter setting p,
by a first order Taylor expansion:

r(p + δp) = r(p) +
∂r

∂p
δp (5.22)

The goal is to minimize the difference vector r, thus after updating the parameter
p, we want r to be zero:

0 = r(p) +
∂rδp

∂p
(5.23)

A normal matrix inverse can only be used for square matrices, thus instead we use
the Moore-Penrose pseudo-inverse:

δp = −Rr(p) with R =

(
∂r

∂p

T ∂r

∂p

)−1
∂r

∂p

T

(5.24)

To find the values of the matrix R the idea is to perturb the known contour
parameters of the training data sets by a small amount. Re-warp the training images
with the permuted contour to the mean shape. The result can be used to describe
a linear relationship between intensity difference between model image and sampled
image, and change in model parameters.

We describe the process for one training set with image I. First warp the image
I with the correct parameters p to the mean shape and convert to vector gm. Then
convert gm to PCA model parameters c and back to gray values g̃m:

c = ΦTsa

([
WsΦTs (x− x̄)
ΦTa (gm − ḡ)

]
− b̄

)
(5.25)
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[bs‖ba] = b̄ + Φsac
g̃m = ḡ + Φaba

(5.26)

Offset parameter pi by a small value α, times the standard deviation σi of the pa-
rameter:

ṗi = pi + ασi with σi =
√
λ(i) (5.27)

Warp the image I with the permuted parameters ṗ to the mean shape and convert
to vector go. Then convert go to PCA model parameters c and back to gray values
g̃o.

The weighted sum of difference between the original model an gray values of the
model created from the permuted parameters give the ”intensity offset” ratio

∂r

∂pi
= (g̃m − g̃o)wi; (5.28)

wi =
1

α
exp

(
−α2

2σ2
i

)
(5.29)

We perform this procedure for a number of offset values α, and use the mean of all ∂ri∂pi
approximations, to make the estimate more accurate. We stay within 0.5 standard
deviations of the training data, with offsets values:

[−0.5,−0.3,−0.1, 0.0, 0.1, 0.3, 0.5] (5.30)

For the pose parameter variances we use σi = 1.

Above procedure is for one data set, we combine the results of multiple data sets
by using the mean of all R matrices.

R =
1

n

n∑
i=1

Ri (5.31)

Note, in case of only a few images, a weighted mean depending on the likelihood of
the training set is expected to work better then this normal mean. For instance if we
know that our patient age is normally above 50, and we have data sets from patients
with age 55, 52 and 21, we lower the weight of the latest.

The constructed linear model is only valid for the local neighborhood of the ob-
ject. Thus the segmentation contour must be close to the real contour. To allow
larger movement a multi-scale model can be used. This multi-scale model is created
by iteratively down scaling the training images by a factor of two. Training a separate
AAM for every image scale. We start an image segmentation with the lowest resolu-
tion image, and after convergence or the maximum number of iterations, we move to
a higher resolution image.
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5.8 Extensions

5.8.1 3D ASM and AAM

The extension to 3D of the ASM and AAM is straightforward. Instead of x, y positions
our position data now contains x, y, z vertices. A contour is a set of points connected
by lines, in 3D the points (vertices) are connected by triangular faces. If alignment
of landmark points, to remove rotation, translation and/or size is used, it has to be
changed to allow 3D alignment. Alignment is often done in the quaternion domain
[59], because quaternions are not susceptible to gimbal lock in case of object rotation.

We replace the line normals of the search step of ASM, by vertex normals. These
vertex normals can be calculated from surrounding face normals. The 2D image
interpolation of line samples is replaced by 3D interpolation.

In the AAM, instead of a triangulation of the data we use a tetrahedral mesh, to
warp the image-volumes.

5.8.2 ASM, Search Distance

The ASM uses the Mahalanobis distance, to find the best new landmark position.
First the local pixels are sampled in the direction of the normal. The derivative of
this profile is compared to the distribution of the profile derivatives in the training
data. This type of distance measure is appropriate for edges with large gray value
contrast. But is not suitable for low contrast edges or if there is a large variation in
gray values between data sets. For example, if half of the data sets have a shadow at
the object edge and the other half a specular high light.

Therefore we introduce a new distance measure. We perform PCA on the edge
gray value profiles corresponding to a certain point in the training data. We use
the resulting eigenvectors to calculate model parameter values for new profiles in the
test data. During the search step we divide the model-values of a new profile by
the corresponding standard deviations found in the training profiles. We define the
distance as the quadratic sum of these normalized model values.

5.8.3 AAM, B-spline Warp

In an AAM triangulation or a tetrahedral mesh is used to warp the image to the mean
shape. This piecewise linear warp is only C0 continuous at the triangle/tetrahedron
boundaries.

Cubic splines can be used to create a smooth C2 continuous warp of the images,
with continuous first and second order derivatives . We use the free form deformation
(FFD) grid of B-splines as introduced by Rueckert [60]. We use the method of Lee et
al. [61] to get a least-squares fit of a B-spline deformation grid to the transformation
described by the model vertices. A diffeomorphic constraint can be used to prevent
folding of the transformation fields, see chapter 7.

This FFD method has also disadvantage, such as being more CPU expensive to
calculate. But the main disadvantage is the least-square fit, of the transformation field
to the vertices. If now one vertices moves it influences the whole transformation field,



5.8. Extensions 43

this increases the condition number with respect to the inversion of the model/gray
value matrix. This can lead to a less accurate AAM search, and segmentation quality.

5.8.4 AAM, Simplex Minimizer

During the search step, the AAM uses the pre-calculated inverse model parame-
ters/gray value matrix, to find the update of the model parameters. This inverse
Jacobian matrix is only valid if the segmentation model is close to the real object.
Also it is only optimal for step-sizes close to the ones used during training.

We can update the model parameters by computing the error between modeled
image and real values, and use error gradients to find the optimal parameter update.
To calculate the error gradient, we have to warp the image for every model parame-
ter. This requires many image-warps for every search iteration, making it very CPU
expensive.

Instead, we propose to use a boundary constrained Nelder-Mead simplex optimizer
[45]. This optimizer requires a lot of iterations before convergence in comparison to
a Newton optimizer. But does not require numerical or analytic gradients, and is
robust against local minima. Stegmann et al. [62] states that simulated annealing
gives higher accuracy than a quasi-Newton optimization in AAM segmentation. This
stresses the importance of robustness against local minima. To speed-up, we do not
use the simplex optimizer from the start, but first optimize with the pre-calculated
inverse Jacobian matrix.

The pre-calculated Jacobian matrix minimizes the quadratic error between mod-
eled image and sampled image. This quadratic cost function is very sensitive to
outliers such as teeth fillings in the mandible. Instead we can also use

Ie = log

(
1 +

(Im − Is)2

σs

)
(5.32)

Which is more robust against outliers, with σs a soft outlier threshold value.

5.8.5 AAM, Initialize Model Parameters

To get a more robust segmentation result a multi-scale AAM model is used. When the
AAM has finished on the lowest resolution image, we end up with model-parameters,
pose-parameters and vertex positions.

The model parameters are an combination of shape and appearance parameters.
With a higher resolution the appearance-model changes thus these model parameters
cannot be used to initialize the AAM in a higher resolution image.

The most straightforward method is to use the shape information of the current
search and sample intensities from the higher resolution image, to obtain initial model
parameters. But because shape and appearance are linked, this will directly cause
the shape to change from the previous found ”optimal” shape.

Therefore we see the model-parameters of the higher resolution image as un-
knowns, and use an constrained non-linear optimizer [63] [64] to find the model-
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parameters which give a shape which is close to the shape of the lower resolution
segmentation result.

5.8.6 AAM, Border

An AAM constructs an appearance model of the gray values inside an object. For
some bones in CT data gray values at the boundary are approximately equal to gray
values more to the center of the object. This situation can cause shrinkage [62] of the
object contour or a less accurate fit of the bone shape.

To deal with this problem we can include ”the layer” of closest boundary back-
ground pixels to the appearance model. Then the appearance model also models
the image edge, leading to a more accurate segmentation at the object boundaries.
This border AAM is only suitable for objects with steady or Gaussian distributed
background intensities. This makes the method suitable for CT segmentation but
less for tasks such as face detection. Stegmann et al. [62] suggest to model only the
pixels close to the object boundaries and dismiss pixels in the object center. This
increases the speed and allows large intensity variations in the object center. Because
the mandible is relative thin we do not dismiss any pixels.

To include the layer of boundary pixels, we first calculate the vertex-normals of
the mesh. The normals are used during sampling to create extra boundary vertices a
few pixels away from the real boundary vertices. In this way we can include a small
layer of background pixels in the appearance model. These extra boundary vertices
are created during sampling and are not include in the shape model.

5.8.7 AAM, Start Position

The AAM uses a pre-computed matrix to convert intensity differences into model
parameter updates. This approach is only valid if the segmentation contour is close
enough to the object in the image, and is not robust to local minima.

The model is usually initialized by a user which positions the mean shape model on
top of the object in the image. If we instead initialize the AAM by using the common
location of for instance the Mandible in a scan, we will have large error in the initial
position. To allow a large amount of inaccuracy we use the following approach:

1. Obtain initial pose parameters like translation, scaling and rotation. For in-
stance the mean values of the training data sets.

2. Do k1 iterations of the lowest scale of the AAM model, for example k1 = 5.

3. Calculate the error Ie between model and image intensities.

4. Perturb the translation by adding random values from a uniform distribution,
for example with values between [−7, 7] pixels of the lowest resolution.

5. Now we repeat steps 2 and 3. If the new error Ie is lower we use the perturbed
values as new initial pose parameters otherwise we keep the old pose parameters.
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Figure 5.3 Hand photo, with manual contour, with in red the major landmarks
and in green the interpolated line points.

6. We repeat this process for k2 iterations, for example k2 = 20.

The ASM model is more robust against small errors in the initial model position
because it does not use a pre-computed update matrix. For large initial position
errors we can adapt this method to the ASM. To obtain a measure of alignment
we can use the Mahalanobis distance or PCA profile distance from the ASM search,
After k1 ASM iterations we calculate the distance errors for the profiles of the current
landmark positions, and use the sum of distance errors as alignment error in the
method above.

5.9 Results

5.9.1 Hand Photos

We have acquired 10 photos of hands with a resolution of 750 × 500. We manually
draw a contour of around every hand, with landmark points on major point such as
the finger tips. We then interpolated 20 evenly distributed points between every two
landmark points. See figure 5.3.

We use these hand data sets to evaluate the performance of our improved ASM
search method. We train the ASM on 9 data sets and test on the scan which was
left out. This is repeated 10 times, with another scan left out each time. The ASM
parameters which we use are shown in table 5.1. The first time we test with the
original method to find the contour point update, based on the Mahalanobis distance
of profile derivatives. The second time we test with our proposed methods which uses
PCA on the profiles and tries to minimize the model values. For the segmentation
results on all data sets see figure 5.4. The original method has a mean dice coefficient
of 0.80. Our new method outperforms the old method with a Dice coefficient of 0.86.

We test the performance of the AAM with B-spline warp extension also on the
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Table 5.1 The ASM segmentation parameters.

parameter value information
k 10 Length of landmark profile
ns 10 Search length in pixels

nscales 2 resolution scales

m 3 limit shape to m
√
λ

nsearch 40 Number of iterations
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Figure 5.4 Comparison of original ASM profile search method, versus PCA profile
search method. Shown are the Dice coefficients, of training a ASM model with a leave
one out scheme.

hand data sets. The parameters which we use are shown in table 5.2, and the results
in figure 5.5.

5.9.2 Mandible

We manually segmented the mandible in 13 patient CBCT data sets. These data
sets are from dentate and edentate patients. After manual voxel based segmentation
we converted the mandible segmentations to triangulated surface descriptions with
marching cubes. Then the vertices are used as input for the shape context registration

Table 5.2 The AAM training and segmentation parameters.

parameter value information
nb 5 Border added (pixels)
s [100 100] Texture size used (pixels)

nscales 4 Number of AAM image resolutions.
nsearch 15 Number of iterations

m 3 limit shape to m
√
λ
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Figure 5.5 Comparison of segmentation performance of the original AAM, versus
an AAM with warp based on free form deformation instead of triangulation. We use
a leave one out scheme. Shown is the dice coefficient between the hand area of the
AAM segmentation and manual segmentation of the hand.

Table 5.3 The AAM training and segmentation parameters.

parameter value information
nb 5 Border added (pixels)
s [150 150 150] Texture size used (pixels)

nscales 4 Number of AAM image resolutions.
nsearch 15 Number of iterations

described in chapter 8. This resulted in dense surface descriptions of the data sets, by
corresponding points (11202). We have combined the resulting surface descriptions,
with expert annotations of the mandibular canals. These expert annotations were
re-sampled to have 80 uniformly distributed points along each line.

We want to test the influence of the number of training data sets. Therefore we
split our data in two parts, we use data set 1 − 11 as training data, and 12 and 13
as test data sets. Now we first compose an AAM only using the first three sets, then
an AAM using the four sets, until we use all 11 data sets. For the AAM we use
the border AAM extension and also simplex optimization of the segmentation result.
The other AAM parameters can be found in table 5.3. The Dice coefficient of the
segmentation results is shown in figure 5.6, the mean distance to expert segmentation
in figure 5.6. The Dice coefficient slowly increases when adding more training data
sets. The mean distance to expert segmentation of the nerve canals fluctuates, but
does not decrease in our results. Probably this is due to the small number of points
describing the canals in comparison to the surface description of the bone (less than
1%). Therefore the model fit to the test set will mainly depend on the bone shape.
Probably only after training on a large amount of data there will be freedom in the
AAM model to move the nerve more independently from the bone shape.
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Figure 5.6 Dice coefficient versus number of training datasets. Shown are the
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Figure 5.7 Mean distance to expert segmentation of the mandibular canal versus
number of training data sets. Shown are the results with data set 12 and 13 as test
sets.

5.10 Conclusion

This chapter describes the ASM and AAM model of Cootes and Taylor [25] [26].
We extend the models and evaluate the performance on 2D hand photos and 3D
mandibles. The first extension is a new ASM search method based on PCA instead
of the original Mahalanobis cost function. We evaluate the performance on 10 photos
of hands. The overlap between manual segmentation and ASM segmentation of the
hand is improved. The original method has a mean Dice coefficient of 0.80, and the
new method a mean coefficient of 0.86.

The second extension replaces the original triangle based image warp by a smooth
free form deformation (FFD) warp. The new warp increases the Dice coefficient for
some hand data sets, but the other half has a lower Dice coefficient. Thus the smooth
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(a) (b)

(c)

Figure 5.8 AAM segmentation results when using 3 training sets (a), and the
results when 11 data sets are used (b). Data set 12 is used as test image volume.
Manual segmentation of a cross-section of the data set is shown in sub figure c.
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deformation not always increases the dice coefficient. Probably, this is because the
warp is less local. The FFD is fitted least squares to the vertices. Thus if one vertex
moves it influence the whole transformation grid. This global effect makes the inverse
Jacobian matrix less well defined.

We have implemented the AAM in 3D including the border AAM extension and
simplex optimization. We tested the influence of the number of training data sets
on the accuracy of mandible segmentation from CBCT. The Dice coefficients slowly
increase if we add more data sets to the training data. We also measured the distance
between manual annotation of the mandibular canals and AAM annotation of the
canal. The mean distance error between automatic and manual annotation does
fluctuate, but does not increase when training data sets are added. This is probably
because the number of model points describing the canals is less than 1% of the points
on the bone surface. Also the percentage of pixels describing the canal is relatively
small. The PCA model is based on correlations. With a small amount of data sets,
variations between bone and nerve look correlated, which are not correlated in real
live. More training data sets will result in a model in which the nerve can move more
independent from the bone shape. The bone contains far more points, which gives the
bone segmentation error relative more weight. If more training data sets are added
the bone segmentation error will become small. In that case the points describing the
nerve will get more influence on the nerve segmentation result. In future work it will
be important to train the model on more scans, such as used by Kainmueller et al.
[33] (106 scans). Also increasing the influence of the points in the mandibular nerve
can probably decrease the segmentation error of the canals. This can be achieved by
using more points to describe the mandibular canals or using a weighted PCA model.



6
Demon Registration1

6.1 Introduction

Quantitative analysis of Multiple Sclerosis brain lesions, e.g. analysis of progressions
requires accurate segmentation. We have developed an automatic lesions segmenta-
tion system [65], which uses multiple MRI modalities of a patient FLAIR, T1, T2, MD
and FA. Pixel accurate lesion segmentation is only possible with pixel accurate regis-
tration between the patient scans, thus we need an accurate multiple MRI modality
registration method.

Thirion introduced a registration algorithm called ’demons algorithm’ [66]. This
method is based on pixel velocities caused by edge based forces. The resulting pixel
velocity / transformation field is filtered by a Gaussian kernel for global registration.
It has a high registration precision [67], but is only able to register images of the
same modality. A solution to allow demon registration of multiple modalities is a
representation transformation in which for example a T1 scan is changed to appear
similar to a T2 scan. In this chapter, we introduce and evaluate a joint histogram
based MRI representation transformation method.

1This chapter is based on the following publication:

i) D.J. Kroon et al. ”MRI Modality Transformation in Demon Registration”, IEEE ISBI, 2009

51
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6.2 Demon Registration Model

6.2.1 Classic Demon Registration

The optical flow equation for finding small deformations in temporal image sequences
is used as basis of the demon registration forces. For a given point p in a static
image F , let f be intensity and m the intensity in a moving image M . The estimated
displacement (velocity) u required for point p to match the corresponding point in M
is given by Thirion [66]

u =
(m− f)∇f

|∇f |2 + (m− f)2
(6.1)

where u = (ux, uy) in 2D, and ∇f is the gradient of the static image. There are
two forces an internal edge based force ∇f and the external force (m− f). The term
(m−f)2 is added by Thirion to make the velocity equation more stable, so to use it in
image registration. Since this displacement u is based on local information, Gaussian
smoothing of the velocity field is included as regularization. The demon equation
is a local approximation, thus needs to be solved iteratively to register two images.
Bro-Nielsen and Gramkow [68] demonstrated that the demon algorithm approximates
the CPU expensive viscous fluid model registration.

The original equation only uses the edges in the static image as passive internal
force, He Wang et al. [69] add an equation with the image edge forces of the moving
image that improves the registration convergence speed and stability.

u =
(m− f)∇f

|∇f |2 + α2(m− f)2
+

(m− f)∇m
|∇m|2 + α2(m− f)2

(6.2)

The normalization factor α is proposed by Cachier et al. [70] to adjust the force
strength.

6.2.2 Image Registration Model

Vercauteren et al. [71] describe a standard registration model; with a registration en-
ergy consisting of a similarity function, a transformation error function and smooth-
ness regularization. They use as similarity measure the squared pixel distance, and
the squared gradient of the transformation field as smoothness regularization. The
resulting iterative registration algorithm can be written as follows:

• Given the transformation field S compute a correspondence update field U by
minimizing E,

E(U) = ‖F −M ◦ (S + U)‖2 +
σ2
i

σ2
x

‖U‖2 (6.3)

With F the static image, M the moving image, transformation field S describing
the translation in x,y of every pixel from its original position, with U the (iter-
ation) update of S, ◦ denotes image transformation, and σi and σx a constant
for intensity uncertainty (image noise) and transformation uncertainty.
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• If a fluid-like regularization is used, let U ← Kfluid ∗U . The convolution kernel
Kfluid is typically a Gaussian kernel.

• Update the transformation field S ← S + U

• A diffusion-like regularization can be included, with S ← Kdiff ∗ S (Not used
in demon registration).

The update step for minimizing the energy E(U) can be calculated using classic
Taylor expansion. We rewrite E for the pixel p, with f the pixel intensity from static
image F and m the intensity from the transformed image M ◦S, u the x,y update in
translation of the pixel from U , and with ∇m the image gradient at pixel p.

E(u) = ‖f −m+ u∇m‖2 +
σ2
i

σ2
x

‖u‖2 (6.4)

Then we can calculate the error gradient:

∇E(u) = 2(∇m)
T

(f −m+ u∇m) + 2
σ2
i

σ2
x

u (6.5)

Assuming that E is minimum at ∇E(u) = 0, we can calculate the needed update:

u =
f −m

‖∇m‖2 +
σ2
i

σ2
x

∇m (6.6)

We see that if we use the local estimation σi(p) = |f −m| as the image noise and
σx= 1

α we end up with the expression of the demons algorithm in equation 1.

6.2.3 Minimizing

Gradient descent is a basic solver for argminx(E(x)), it converges not as fast as
higher order minimizers. With a large number of variables as is the case with image
transformation fields, it is more memory efficient.

x← x− µ ∇E
‖∇E‖

, ∇E =

[
∂E

∂x1
,
∂E

∂x2
, ..,

∂E

∂xn

]
(6.7)

in which µ is the step size which is found through line search using the error equation.
We can also write the extended demon Registration in gradient descent format using
equation 6.4 as E and 6.6 as ∇E, also an active edge force can be added as in equation
6.2. Equation 6.6 is derived from ∇E(u) = 0, thus it also provides a start value µ for
the line search.

6.3 Modality Transformation

6.3.1 Mutual Information

Mutual information is commonly used as a similarity measure in multiple modality
registration. The mutual information of moving imageM and static image S is defined
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as:

I(M,F ) =
∑
M,F

p(m, f)log

(
p(m, f)

p(m)p(f)

)
(6.8)

In this equation p(m) and p(f) are the probabilities of the gray values in resp. image
M and F , p(m, s) is the joint probability of the images gray values which can be
derived from the joint histogram. Mutual information is global and gives only one
similarity value for the whole image area, which is a disadvantage when using finite
difference methods for local registration.

The idea behind mutual information registration is that every image has certain
uniform intensity regions separated by edges. These regions correspond with regions
in another image but with different intensity and texture. In an iterative registration
process, corresponding regions will overlap more increasing the peaks in the joint
histogram.

6.3.2 Proposed Method

We propose to use the joint histogram peaks to transform one image representation
in to the other, allowing fast intensity based local image registration such as demon
registration.

The joint histogram H(I, J) of image I and J can be written as 6.9, looping
through all pixel locations

H(bI(x)Nc , bJ(x)Nc) = H(bI(x)Nc , bJ(x)Nc) + 1 (6.9)

With floor function bc, N the number of bins and with I, J ∈ [0, 1] and x is the pixel
location.

We transform the image I into IT with the same representation as J . This is done
by finding for every pixel the gray value in image J which overlaps most often with
the pixel gray value in image I.

IT (x) = argmaxj(H(bI(x)Nc , bjNc)) (6.10)

In medical images two regions can have the same gray value in one modality, but
in another both regions can have totally different gray values. Also medical images
suffer from slowly varying intensity non uniformities called the bias field in MRI.
This implies that we have to use a more local modality transformation. We solve this
problem by calculating a separate local mutual information histogram for every pixel
by using Gaussian windows.

6.3.3 Combined with Demon Registration

When we transform an image from one MRI representation to another, the transfor-
mation is poorly defined on edges of the image, and the new image can contain some
false edges. Thus a modality transformed image is not very useful to serve as edge
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forces. Thus our final demon registration algorithm with representation transforma-
tion 2 is:

E =
1

2
‖FT −M ◦ (S + U)‖2

+
1

2
‖F −MT ◦ (S + U)‖2 +

σ2
i

σ2
x

‖U‖2
(6.11)

∇E = (MT ◦ S − F )

(
∇F

|∇F |2 + α2(MT ◦ S − F )2

)

+(M ◦ S − FT )

(
∇M

|∇M |2 + α2(M ◦ S − FT )2

) (6.12)

With E the registration error, MT and FT the modality transformed static and moving
image, S the transformation field, U the update of the transformation field (used by
the line search).

To avoid local minima and to speed up registration, a scale space approach is used.
We first resize the original images to 8×8 pixels and register these small images. Next
we resize the found transformation fields and original images to 16 × 16, and so on,
until the original resolution is reached.

6.4 Results

6.4.1 Setup

To test the performance of the demon registration algorithm we need perfect aligned
ground truth data from multiple modalities. For this reason we use the BrainWeb
MRI Simulated Normal Brain Database [72]. This database can provide T1 and T2
images with several noise and bias configurations. The noise in the simulated images
has Rayleigh statistics in the background and Rician statistics in the signal regions.
The ’percent noise’ number represents the percent ratio of the standard deviation of
the white Gaussian noise versus the signal for a reference tissue. Bias fields are varying
fields estimated from real MRI scans; for a 20% level, the multiplicative biasfield has
a range of values of 0.90 to 1.10 over the brain area [73].

Because demon registration is developed for local non-rigid transformation, we
test the our algorithm using a spherical distortion (spherize filter) on an part of a T1
brain slice, location center slice z-plane (90), x,y coordinate 115,60 radius 34. The
spherical distortion is described by [74]:

R = R0/(
√

2sin(
γ

2
)) (6.13)

Xc =
1

2
(1 + cot(

γ

2
))R0, Yc =

1

2
(1− cot(γ

2
))R0 (6.14)

2Matlab implementation available on MathWorks.com ’File Exchange’
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Figure 6.1 Figure A and B shows a T2 and T1 slice without noise or bias field. Figure
C and D shows the local spherize transformed T1 slice with a γ value of 30 and 60 degrees.

Figure 6.2 Figure A and C shows a T1 and T2 slice without noise or bias field, which
are modality transformed into image, B and D, respectively.

[
x́
ý

]
=
Yc +

√
R2 − (

√
x2 + y2 −Xc)2√

x2 + y2

[
x
y

]
(6.15)

With R0 the 2D radius of the distortion, R the radius of the virtual 3D sphere, γ
the amount of distortion range 0 to 90 degrees, pixel coordinates x, y with x́, ý the
spherical transformed coordinates

An example of the transformed images are shown in figure 6.1. Before the demon
registration can be done both the T1 and T2 are transformed to their opposite MRI
representations, using local joint histogram peaks between the T1 and T2 image, see
figure 6.2.

The parameters in the demon registration are chosen to suppress noise but still
allow local transformations, σ of the transformation Gaussian smoothing is 8, α is cho-
sen 2.5. The Gaussian window used for modality transformation is chosen 100×100
with σ = 33, and after registration, a Gaussian window is used for modality transfor-
mation with size 70×70 and σ = 23 followed by a second registration pass.

6.4.2 Methods Used as Comparison

We compare the registration performance with the free form deformation (FFD) reg-
istration method grid existing of 1D B-splines which is introduced by Rueckert et al.
[60]. The control points of the grid are moved to transform an image, and a similar-
ity measure between a target image and transformed image is used to determine if
the registration improves. We have implemented the algorithm including multi-scales
refinement, and for fast and stable mutual information registration, we calculate the
mutual information measure separately for each control point, from his neighborhood.

Edges of the regions in T1 and T2 can be registered onto each other, for comparison
to our representation transformation method. In [75] the normalized gradient field
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Figure 6.3 A CT slice (A) is registered with demon registration on a T1 (B) slice of the
same patient,figure C shows the result.
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Figure 6.4 Registration performance with increasing distortion. A spherical transformed
T1 slice is registered on a T2 slice, with modality transformed demon registration, gradient
images registration and B-spline registration.

is used. We have tested the normalized gradient field and a canny edge detector
transforming both T1 an T2 to the same ”edge representation’. These approaches
give large registration errors, because some region edges are detected in T1 but not in
T2. Finally we decided to high pass filter the images and normalize the images with
|I| /(|I|+ β), with constant β = 0.1, this gave more reliable results.

6.4.3 Simulations

The first simulation is by spherical transforming a part of a bias and noise free T1
slice as in figure 6.1. We show the effect of the amount of distortion between a T1
and T2 slice versus registration result. The mean transformation error is calculated
on the area of the spherical distortion 70×70, and is the distance in position between
the correct pixel location and location after registration. The transformation error
after registration is shown for the B-spline, demon and gradient registration, see figure
6.4. Modality transform with demon registration clearly outperforms the other regis-
tration methods. The spherical distortion has non smooth transformation edges, thus
the Rueckert B-spline registration which produces curvature smooth transformation
fields performs less for a spherical distortion of more than 30 degrees. The Gradient
Registration has an error due to edges which are not present simultaneously in both
modalities.

The second simulation is to test the influence from a bias field on the registration.
A bias field will broaden the histogram peaks used for detection, thus tissues cannot
be classified by one gray value. This problem is partly solved in our representation
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Figure 6.5 Bias field registration performance. With spherical transformed T1 slice
registered on T2 slice.
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Figure 6.6 Noise registration performance. Spherical transformed T1 slice registered on
T2 slice, both with bias fields.

transformation method by using a local Gaussian window for the joint histogram.
The results can be found in figure 6.5.

The final simulation is to test the influence of noise on the registration result, see
figure 6.6. With increasing noise the transformation error increases slightly. From
zero to one percent noise the registration error becomes better, this is due to local
minima during registration. A simulated annealing optimizer is most likely better
than the current gradient decent.

6.5 Conclusions

Modality transformation using the intensity peaks in a joint histogram seems to work
well for deformed MRI images, and probably also with CT see figure 6.3. The bias
field has small effect on the registration error with small deformations, but with large
deformations doubling the bias fields will also double the transformation error. Gra-
dient / Edge based registration suffers from the fact that region edges do not show
in all modalities, which results in incorrect transformations during registration with
aligned image data. This problem can be solved by using a wider Gaussian to smooth
the registration velocity field, but in that case registration is no longer local. Rueck-
erts B-spline registration is not capable to deal with large spherical deformations,
probably because the B-spline grid can only represent really smooth transformations.
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In conclusion demon registration with image transformation gives the best results
while dealing with large spherical distortions and good T1 and T2 MRI images. The
registration method used can probably be improved by new modality transformations
during the demon registration iterations and using an simulated annealing optimizer.
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7
B-spline Registration1

This chapter is about registration, with as main focus the nonrigid registration in-
troduced by Rueckert et al. [60]. The first section explains the usefulness of image
registration. The second section describes a rigid registration method, and basics of
rigid registration. The third section describes the non-rigid registration of Rueckert,
followed by a section about image warp smoothness penalties. The last section dis-
cusses the introduced free form deformation (FFD) registration, and compares it to
Demon registration.

7.1 Image Registration

In image registration we have usually two images: a static/reference image, and a
moving/deforming image. The goal is to align the moving image as good as possible
with the static image. This is useful for image segmentation and detection of differ-
ences between images [76]. For example, intensity differences between a picture of a
patient to an aligned picture of a healthy person can be used to detect a disease [77].
Or local transformations between medical images from multiple time steps can say
something about tumor growth [78]. In segmentation the idea is that one of the data
sets is accompanied by a segmented-image with object labels. The image without la-
bels is then registered to an image with object labels. The labels can then be warped
to the other image, creating a segmentation of that image.

1This chapter is partly based on the following publication:

i) D.J. Kroon et al. ”Multiple Sclerosis Detection in Multispectral Magnetic Resonance Images
with Principal Components Analysis”, MICCAI, A Grand Challenge II, 2008
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7.2 Rigid Registration

We have two 3D images which we want to align. The first is the moving image Im
and the second isthe static image Is. Both have the same image dimensions X,Y, Z.
We denote the domain for the image coordinates of the images as Ω = (x, y, z)|0 ≤
x < X, 0 ≤ y < Y, 0 ≤ z < Z

7.2.1 Transformation

The first step is to define the transformation between the two images. In case of rigid
alignment we have rotation and translation. We can describe these transformations
by a rotation matrix Mr and translation matrix Mt:

Mr =


1 0 0 0
0 cos(rx)− sin(rx) 0
0 sin(rx) cos(rx) 0
0 0 0 1




cos(ry) 0 sin(ry) 0
0 1 0 0

− sin(ry) 0 cos(ry) 0
0 0 0 1




cos(rz)− sin(rz) 0 0
sin(rz) cos(rz) 0 0

0 0 1 0
0 0 0 1

 (7.1)

Mt =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 (7.2)

The warp can then be described by:
xn
yn
zn
1

 = MrMt


xm
ym
zm
1

 (7.3)

With (xn, yn, zn) a pixel coordinate in the warped image In, and (xm, ym, zm) a pixel
coordinate in the original moving image Im. But we can also invert the transforma-
tion, and use backwards interpolation of the original moving image:

xm
ym
zm
1

 = (MrMt)
−1


xn
yn
zn
1

 (7.4)

The advantage of backwards warping is that the interpolation between pixels is
done in the original image, allowing fast methods such as tri-linear and cubic inter-
polation. In case of forward mapping often piecewise linear transformations are used,
but they require CPU expensive triangulation of the warped points.
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7.2.2 Image Similarity

To determine the quality of alignment between the warped image In and static image
Im a similarity measure is needed. One of the most used similarity measure is the
sum of squared differences (SSD):

E =
∑
x∈Ω

(In(x)− Im(x))
2

(7.5)

With E a measure of the alignment error between the images. This error is inversely
related to the quality of alignment. Other often used similarity measures are, mutual
information (MI), normalized mutual information (NMI) and local mutual information
(LMI) [79]. The advantage of mutual information is that it allows registration between
different image modalities and is robust against illumination differences. Other sim-
ilarity measures are [80], gradient differences, gradient correlation, normalized cross
correlation, pattern intensity, and log of absolute difference.

7.2.3 Optimization

In previous sub-sections, we introduced a method to warp the image and a method
to measure the quality of the warp. But how do we determine the unknown param-
eters for the rotation and translation matrices? The most common way is to first

construct an error-gradient dE
dp =

[
dE
dp1

, dEdp2 , ..,
dE
dp6

]
for the unknown warp parameters

p = [rx, ry, rz, tx, ty, tz]. This error gradient can calculate using finite differences,
with h a small value.

dE

dpi
= E(pi + h)− E(pi) (7.6)

Calculating the six unknowns requires six finite difference image warps, and one warp
for the initial error.

Now we know the error gradient, we can move the parameters in the opposite
direction to minimize the error and maximize the alignment. To determine the amount
of movement in that direction we need to calculate the step length.

The step length can be calculated by warping the image for a certain step length
and calculate the error between the images. After a few tries we can fit a polyno-
mial through the step length versus error and use the derivative of the polynomial
to find the optimal step length. The finite differences are only locally valid, thus we
have to calculate the error gradient and step size iteratively to align the images. The
described method above is called steepest-decent minimization. An method which
converges faster but requires second order derivatives of the error is Newton optimiza-
tion. Second order derivatives require many finite difference warps. Therefore we do
not use a Newton but a Quasi Newton optimizer [81]. This optimizer estimates the
second-order information from gradient information of previous optimization steps.
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7.3 Non-Rigid Registration

The non-rigid alignment is based on the method introduced by Rueckert et al. [60].
This method is based on free form deformation (FFD) with a B-spline grid. To define
a spline based FFD, we denote the domain of the image volume as Ω = (x, y, z)|0 ≤
x < X, 0 ≤ y < Y, 0 ≤ z < Z. Let Φ denote a nx x ny x nz mesh of control points
φi,j,k with uniform spacing dx,dy and dz. Then, the FFD with transformation T can
be written as the 3-D tensor product of 1D cubic B-splines

T =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(v)Bm(u)Bn(w)Φ(i+ l, j +m, k + n) (7.7)

where

i = bx/nxc − 1 , j = by/nyc − 1 , k = bz/nzc − 1 (7.8)

u = x/dx − bx/dxc , v = y/dy − by/dyc , w = z/dz − bz/dzc (7.9)

Note: equation 7.9 is our corrected version of the equation in the paper of Rueckert
et al. [60] which stated that u = x/nx − bx/nxc.

Bl represents the lth basis function of the B-spline

B0(u) = (1− u)3/6
B1(u) = (3u3 − 6u2 + 4)/6
B2(u) = (−3u3 − 3u2 + 3u+ 1)/6
B3(u) = u3/6

(7.10)

The quality of alignment of the moving image Im with the static image Is with a
certain control grid Φ, can be described by a similarity measure such as SSD. The
iterative alignment is done with steepest gradient decent optimization of the error
function E. The gradient of a certain control point Φ(i) is calculated by moving
a control point a ∆ step up, down, right, left, forwards and backwards. We then
compute the similarity error ε in the affected area for all those six transformations,
after which the central gradient ∇E(Φ(i)) at the point is known.

Φ(t+ 1) = Φ(t) + µ
∇E

||∇E||
(7.11)

∇E =
∂E(Φ)

∂Φ
(7.12)

The FFD registration is often done at multiple image scales. Starting with a control
grid of a few knots and low image resolution. After the registration converges, the
control grid is refined and image resolution increased. This multi-scale approach
increases the registration speed and decreases the change of local minima.
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7.4 Penalties

In case of tissue registration often a certain smoothness of the deformation is assumed.
These kind of smoothness constraints can be added by introducing a smoothness
penalty to the registration cost function. The penalty which Rueckert et al. [60]
added is the 3-D counterpart of the 2-D bending energy of a thin-plate of metal:

Csmooth = 1
V

∫X
0

∫ Y
0

∫ Z
0

[(
∂2T
∂x2

)2

+
(
∂2T
∂y2

)2

+
(
∂2T
∂z2

)2

+
(
∂2T
∂x∂y

)2

+
(
∂2T
∂x∂z

)2

+
(
∂2T
∂y∂z

)2
]
dxdydz

(7.13)

Another often used constraint is a volume preserving cost function. The local rel-
ative volume change of the transformation field is measured by the local Jacobian
determinant of the transformation field. The Jacobian matrix is a first order affine
approximation of the free form deformation:

J =


∂Tx
∂x

∂Tx
∂y

∂Tx
∂z

∂Ty
∂x

∂Ty
∂y

∂Ty
∂z

∂Tz
∂x

∂Tz
∂y

∂Tz
∂z

 (7.14)

The Jacobian matrix can be calculated for every pixel coordinate of the volume. The
transformation is called diffeomorphic, when the determinants of all Jacobian matrices
are above zero. This means that the deformation field is smooth and invertible. In
that case for every pixel in the static image consist an unique pixel in the moving
image and the other way around. Thus there is no folding of the deformation fields.
During registration the following cost function Csmooth can be added to keep the
transformation diffeomorphic and volume preserving:

Csmooth =
1

V

∫ X

0

∫ Y

0

∫ Z

0

|log (det (J(x, y, z)))| dxdydz (7.15)

The absolute log inside this equation cannot be analytical intergraded over the image
volume. Therefore we need to calculate the cost function separately for all the pixel
coordinates in the image. This makes the regularization CPU expensive.

Therefore other methods are developed to keep the transformation diffeomorphic.
One method which can be used with B-splines is the composition method [82]. The
idea is that if we warp an image with a diffeomorphic transformation field, and then
warp the result with another diffeomorphic field, the combined effect is also diffeo-
morphic. A FFD is diffeomorphic if the nodes which describe the transformation only
move a small distance. Choi and Lee [83] determined that if the movement of the FFD
nodes is smaller than 1

2.48 of the node distance dx, dy, dz, the warp is diffeomorphic.
For larger diffeomorphic deformations we can use a composition of FFD warps

7.5 Discussion

The FFD registration using a B-spline grid is one of the most used registration meth-
ods in Medical Imaging with more than 3300 publications on Elsevier’s Science Direct
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(http://www.sciencedirect.com/). FFD registration has many advantages. It is robust
in case of noise, especially when used in a multi-scale registration approach. It allows
several similarity measures for alignment to be used. Volume preserving and smooth-
ness penalties can be easily integrated in the registration. The registration almost
always produces physical possible smooth transformation fields. It is also relative fast
because the number of control nodes which must be optimized is lower than the num-
ber of pixels in the image. In a basic FFD the movement of a node is only influenced
by the pixels in the local 4× 4× 4 neighborhood of nodes.

The major disadvantage to the FFD registration is the inverse FFD. The FFD
cannot be inverted and described by the same control point grid without loss of pre-
cision. To get an accurate inverse, the number of control points must be increased or
the inverse of the discrete transformation fields must be used. This makes symmetric
and group wise image registration difficult.

In the previous chapter we introduced demon registration. Demon registration
cannot easily incorporate other similarity measures such as mutual information. The
FFD registration uses a grid of B-splines, which is not suitable for deformations such
as rotations and twists. Demon registration often has better registration results than
FFD registration in terms of intensity differences. This is because demon registration
is a kind of fluid registration, allowing complex and large deformations. This is also a
disadvantage, because in demon registration pixels can flow long distances, creating
deformations which are physically not possible. A FFD allows pixel based volume
preserving penalties for example to make bone pixels rigid. In fluid registration there
is no static reference such as the uniform-grid in FFD registration, making pixel based
penalties more difficult to use.

The above comparison changes, in case of diffeomorphic registration through com-
position. Because in case of composition complex deformations can be created by
using small warps, changing the FFD registration to a more fluid like registration.

In chapter 10, we compare the performance of demon registration and B-spline
registration on Mandible segmentation, and mandibular canal localization.



8
Shape Context Registration

8.1 Introduction

Obtaining the location and shape of the mandible in CT data is an important pre-
processing step for localization of the nerve-channels inside the mandible. A robust
method already used for mandible segmentation [33] is an Active-Shape Model (ASM).
This is a deformable model with shape constraints, learned from training sets. This
a priori shape information makes the (ASM) robust against intensity variations and
implicitly provides us with a reference coordinate systems for localization of objects
inside the mandible [84].

ASM uses Principal Component Analysis (PCA) to learn shape variations and
correlations between corresponding point-sets in training data sets. In this report we
focus on building a dense Point Correspondence Model (PCM) for mandible surfaces.
Constructing a dense PCM by manual annotating CT data is a difficult and time con-
suming task. Literature already describes methods for PCM building. For example,
description by spherical harmonic basis functions (SPHARM), Minimum Description
Length (MDL) and subdivision surface (MSS) [85]. SPHARM is mainly suitable for
spherical closed surface objects. MSS has to be manually initialized by anatomical
landmarks. MDL maps the object first to a spherical surface, and then manipulates
the correspondences to obtain an ASM model with minimum description length [86].
A major disadvantage is that the absolute minimum is obtained when all points col-
lapse into one single point. Keeping one set of points fixed as master, does not solve
this problem entirely [87].

In this chapter we introduce an alternative method for dense PCM construction.
It does not have a spherical or closed surface constraint and is fully automatic. We use
the method to construct a PCM for the surface of the mandible in cone-beam CT. The
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method can also be used on other types of objects or as preprocessing step for the ex-
isting MDL method. Our method is based on finding correspondences using the Shape
Context (SC) model [88], followed by a novel iterative closes point (ICP) method. The
surface mapping is constrained by a B-spline based Free Form Deformation (FFD)
grid [61], with positive Jacobian to produce diffeomorphic transformations.

The next section describes the 2D shape context method, and the extension to 3D
followed by a sub-section of further improvements. The third section describes the
symmetric ICP method. This is Followed by the results of building a PCM of the
mandible. The last section describes the conclusions and discussion.

8.2 Corresponding Points using Shape Contexts

8.2.1 Shape Contexts

The first step in ASM building is describing the contour or surface of the object in
each training data set by a set of points P = p1, ...pn with pi ∈ <2 or pi ∈ <3. Every
point in a training data set must have a corresponding point in every other data
set. These point correspondences allow PCA to find all major shape variations of the
object. A way to construct a point correspondence model is to non-rigidly register
the point-set of one data set, to all other point-sets. A point must always have the
same-relative position. For instance, always be on the tip of the nose in a face training
set. An unique descriptor can be used to capture the relative-location of a point, and
to find corresponding points.

Shape Context (SC) by Belongie et al. [88] is a method which can find one-to-one
correspondences between two 2D point clouds P with n points, and Q with m points.
The method consists of two steps: the first is constructing a feature vector for each
point in both data sets. The second step is matching the feature vectors of the point
clouds, by minimizing the total matching cost using the Hungarian [89] algorithm.

The feature vector of a point in the SC algorithm is a log-polar histogram, repre-
sented as vector. This histogram collects the location of all other points relative to the
selected point, described by log-distance and angle. We can calculate the matching
cost Cpq of two points p and q, with feature vectors g and h with length K, using χ2

statistics:

Cpq =
1

2

K∑
k=1

[g(k)− h(k)]
2

g(k) + h(k)
(8.1)

When we calculate the cost between all points in a data set, we end up with a m× n
matrix. To achieve the one-to-one correspondences we define the best matching, as
the matching with the lowest total connecting cost between points. This can be done
in O(N3) time using the Hungarian method [89]. Rows and columns with fixed cost
are added to the cost matrix to make it square, and to compensate for the difference
in the number of points and to compensate for outliers.

The points which have found a corresponding point are used to construct a spline
based warping-field. This field warps the point based surface description from one
data set to the shape of the object in the other data set. This creates a new point
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description of the data set with one-to-one point correspondence in the other data
set.

8.2.2 Extension to 3D

The extension of 2D shape context to 3D can be done in a straightforward way, by
replacing the log-polar histogram by a 3D log-spherical histogram. We describe the
points by the log of the radius, inclination (polar angle) and azimuth. But uniform
sampling of inclination and azimuth on a sphere, will not result in an uniform dis-
tributed histogram, due to changing surface-area. We solve this by replacing the
inclination by the cosine of the inclination. The following equation gives our mapping
from Cartesian coordinates (x, y, z) with radius r to histogram coordinates (or, oθ, oφ):

or =
nr

log(rmax)− log(rmin)
log

(
r

rmin

)
oθ = nθ

z

r
(8.2)

oφ =
nφ
2π

tan−1(
y

x
)

With nr, nθ, nφ the number of histogram bins, and rmax, rmin are constants describing
the maximum and minimum distance in the point cloud.

8.2.3 Enhancements

Histogram

The log-spherical histogram is often sparse, which leads to discretization effects and
inaccurate matching. A solution is to transform not only the points but also the
triangles of the surface geometry to histogram space, and use them to create extra
points. In our case the mapping is nonlinear, thus instead we transform the triangu-
lated surface to a voxel volume in image space. This is done by iteratively splitting
the polygons into smaller polygons. If a polygon is smaller than a voxel, it is drawn
in the volume. The boundary voxels are then used as points instead of the vertices.
This creates a much denser histogram. The resolution of the image volume, can be
used for the trade of between memory usage, computing speed and histogram density.

Approximating B-splines

The shape context results will contain a certain percentage of wrong point correspon-
dences. Locating the areas with wrongly matched points is possible, but we do not
know which of the points is wrongly matched, or if a matching point exist. Interpolat-
ing thin plate splines (TPS) can be used to construct the transformation field between
a list of matched points, but this field will be non-smooth due to the wrongly matched
points. Therefore the approach is to approximate the transformation between points
sets with regularized thin plate splines, allowing a certain amount of correspondence
error. After calculating the transformation field the original point cloud is warped.
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Repeating the shape context process on the now roughly aligned data sets will result
in a more accurate and robust registration.

Instead of regularized TPS, we fit a multi-level Free Form Deformation (FFD)
grid. We denote the domain of the image volume as Ω = (x, y, z)|0 ≤ x < X, 0 ≤
y < Y, 0 ≤ z < Z. Let Φ denote a nx × ny × nz mesh of control points with uniform
spacing dx,dy and dz. Then, the FFD with transformation T can be written as the
3-D tensor product of the familiar 1D cubic B-splines Bl with basis l [60] :

T =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(v)Bm(u)Bn(w)Φ(i+ l, j +m, k + n) (8.3)

where
i = bx/nxc − 1 , j = by/nyc − 1 , k = bz/nzc − 1 (8.4)

u = x/dx − bx/dxc , v = y/dy − by/dyc , w = z/dz − bz/dzc (8.5)

We approximate the transform field between data sets by a FFD grid Φg(i, j, k).
Which is constructed from the point correspondences with the method of Lee et al.
[61]. The method starts with a rough FFD grid with is iteratively refined to get a
better approximation of the transformation. Thus we can control the regularization of
the transformation field by the number of FFD refinements. The method of Lee does
not guaranty a diffeomorphic transformation. Smooth and folding free deformation
grids have a Jacobian JT(x) which is always larger than zero. For this reasons we
calculated the discrete Jacobian for all voxel coordinates x in the data set volume
[90].

JT(x) = det


∂Tx(x)
∂x

∂Tx(x)
∂y

∂Tx(x)
∂z

∂Ty(x)
∂x

∂Ty(x)
∂y

∂Ty(x)
∂z

∂Tz(x)
∂x

∂Tz(x)
∂y

∂Tz(x)
∂z

 (8.6)

We minimize the distance between a uniform initialized FFD grid Φt(i, j, k) and the
fitted FFD grid Φg(i, j, k). Obtaining a folding free transformation field by using an
quasi-Newton optimizer, and the sum of the following cost functions:

Ocost =
1

nxnynz

∑
i,j,k

‖Φt(i, j, k)−Φg(i, j, k)‖ (8.7)

Jcost =
1

XY Z

∑
x

|log(max(J(x)), ε)|
max(J(x), ε)

(8.8)

With ε the floating point precision near zero. The derivatives of the cost function are
obtained through finite differences.

Spatial Normalization

The size, translation and orientation of the mandible varies between data sets. We
normalize the data sets by subtracting the mean and dividing the point coordinates



8.3. Corresponding Points using Iterative Closest Point 71

by their distance to the center. We also perform Principal component analysis (PCA)
on the points, resulting in a 3 × 3 eigenspace matrix in 3D [91]. We use the inverse
of this matrix to align the points with the x, y, z axis. This normalization can change
the axis order and axis signs. Thereforee we calculate the Euclidean distance between
the unrotated points and rotate points, and change the order and sign of the axis,
until the distance is minimal.

Hungarian Algorithm

The original shape context uses the Hungarian algorithm to get a list of one-to-one
matched point. This algorithm matches 1000 points in about 8 seconds, but it takes
2 hours to match 10000 points, making it unsuitable for large point sets. Wrong
connections will be created in case of surface sampling differences, due to the one-
to-one restriction of the Hungarian algorithm. Therefore we replace the Hungarian
algorithm and allow multiple-to-one connections. Connecting each point in P to the
point in Q with the lowest matching cost Cpq. We also add the connections from the
other data set Q to P . We regularize the obtained point transformations with the
FFD approximation, and solve the whole problem iteratively.

In practice, points often correspond to points at approximately the same position
in another data set. Thus we can split the correspondence problem into sub-volumes
for faster processing.

8.3 Corresponding Points using Iterative Closest
Point

Finding corresponding points between roughly aligned objects can be done with It-
erative Closest Point (ICP) matching. The algorithm matches closest points between
two point data sets, for example using kd-trees [92]. The matched points are used
to construct a transformation field, which warps the points to better align the point
clouds. The closest point matching followed by warping is repeated for a few iterations
to get accurate alignment.

8.3.1 Distance Field

Local minimums can prevent surfaces to slide along each other, in point to point
matching. Therefore we perform point to plane matching, based on distance fields.
There exist fast algorithms to calculate the Euclidean distance transform for a binary
volume [93]. The polygon rasterisation algorithm introduced in the Histogram sub-
section, can be used to discretize our surface to a binary volume VB , which is then
converted to the distance volume D. Matching a point x = (x, y, z) to the closest
interpolated point y = (x, y, z) on the other surface :

y = x−D(x)
G(x)

‖G(x)‖
with G(x) =

[
∂D(x)

dx
,
∂D(x)

dy
,
∂D(x)

dz

]
(8.9)
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Table 8.1 Surface registration using SC and ICP iterations. Regularized by a R
times refined B-spline grid ranging from [7, 7, 8] to [204, 204, 279] . With Dice coeffi-
cient, and mean and variance between manually and registered landmarks.

# Type R Mean Var Dice # Type R Mean Var Dice
0 start 0 18.5 5.6 0.18 8 SC 5 2.7 1.5 0.92
1 SC 1 8.1 3.0 0.44 9 ICP 5 2.5 1.4 0.94
2 SC 2 6.2 2.5 0.57 10 ICP 5 2.4 1.4 0.95
3 SC 3 4.1 1.8 0.74 11 ICP 6 2.4 1.4 0.95
4 SC 3 3.6 1.8 0.78 12 ICP 6 2.4 1.4 0.95
5 SC 4 3.2 1.6 0.87 13 ICP 7 2.4 1.5 0.95
6 SC 4 3.1 1.6 0.89 14 ICP 7 2.5 1.4 0.95
7 SC 5 2.8 1.5 0.92

In practice we only want to match points with surfaces with approximately the same
surface-normal. Therefore we uniformly sample a sphere with radius one with twelve
vertices Vi = [vx, vy, vz] i = 1, 2, ..12. We also calculate the surface normal NB(i, j, k)
for the pixels in our binary volume VB and calculate the vertex normals NP of all the
points. Now we match all points for which V1 ·NP (x) ≥ α to a binary volume with
only the boundary pixels for which V1 · NB(i, j, k) ≥ 1

2α. With α a constant set to
α = Vi · Vi+1. In this way we can do the point surface matching separately for all 12
orientations.

We first perform point to plane matching from all points in P to the boundary of
Q, and then we match Q to P . The results are combined into one FFD which warps
P . The symmetric matching is done to get faster convergence and a more robust
registration.

8.4 Results

We use a database containing 10 Cone-Beam CT scans, The scans contain 400 ×
400 × 550 voxels with a resolution of 0.4 × 0.4 × 0.4mm. Some of the scans are
from patients without teeth, causing severe erosion of the mandible. We segment the
mandible from the data sets in to binary volumes, with manual initialized 2D active
contours. Followed by Marching-Cubes to get the triangulated surfaces geometry.
For our correspondence point matching we select the first data set containing 47, 858
vertices, and register it to all other data sets using the following steps. First eight
iterative shape context steps, followed by six ICP iterations. During the iterations the
alignment improves and number of false matched points decreases, thus we start with
a small number of B-spline knots and refine the grid with each iteration, lowering the
regularization. We use the Dice coefficient s = 2|V1 ∩V2|/(|V1|+ |V2|) to measure the
similarity between the volume defined by the original triangulated surface, and the
volume of the fitted triangulation. We also manually labeled all data sets with 12
points, at major landmark positions, to measure the quality of the correspondences.
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Figure 8.1 A: Surface of data set 1 with landmarks, B: data set 2, C: Surface and
Landmarks of data set 1 deformed into data set 2.

Table 8.2 Landmark distance (mm) and Dice coefficient after registration.

ID/L 1 2 3 4 5 6 7 8 9 10 11 12 Mean Std Dice
1 2.3 4.0 2.2 1.5 2.6 2.6 1.6 5.1 4.4 0.8 0.6 1.6 2.46 1.40 0.95
2 0.9 3.4 0.7 6.0 1.9 6.9 5.9 0.9 5.9 3.5 1.3 3.2 3.38 2.28 0.97
3 2.2 3.0 2.2 2.9 1.3 0.2 5.4 2.7 3.3 1.9 3.1 3.8 2.67 1.29 0.98
4 1.2 1.2 2.5 6.1 3.9 3.2 5.1 6.2 5.4 2.0 3.3 6.4 3.88 1.39 0.95
5 3.0 0.3 0.5 5.0 3.5 1.6 4.9 5.7 5.7 2.0 1.3 4.2 2.90 1.81 0.97
6 4.5 2.7 3.0 3.6 4.4 3.9 4.6 4.5 2.0 4.5 1.8 1.1 3.38 1.23 0.94
7 3.2 2.5 1.6 1.4 7.6 6.9 6.1 9.1 2.7 4.6 3.4 1.1 4.20 2.64 0.95
8 1.3 2.1 1.7 5.4 10.0 7.4 2.1 2.4 4.4 6.0 0.6 2.9 3.86 2.85 0.97
9 1.7 4.0 2.5 5.4 7.8 6.2 3.4 2.1 7.5 1.4 2.0 1.7 3.82 2.35 0.97

The size of the FFD grid, Dice coefficient, and landmark distance for the first data set
through all the iterations, are shown in Table 8.1. Table 8.2 shows the Dice coefficient,
and landmark distance for the all data sets after the combined shape context and ICP
registration. See figure 8.1 for an example result.

8.5 Discussion and Conclusion

We introduced a method to obtain a dense PCM, by combining 3D shape context
with a symmetric ICP method, regularized by a diffeomorphic FFD. The method is
not restricted to spherical or closed shape objects.

Robust surface registration with Dice coefficients above 0.94 is obtained, on our
mandibular data. We annotated the data set for a second time to find the intra-
observer variability and found a distance mean of 2.4mm with a standard deviation
of 1.88. Distances between registered and user applied landmarks are in the order of
3.4mm which is 1mm larger than the intra-observer distance.

Future research on a larger set of data with accurate ground-truth landmarks is
needed. Allowing comparison between the performance of the introduced method and
the existing MDL method and other PCM methods.
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9
Minimum description Length

9.1 Introduction

In chapter 5 we introduce an active shape model (ASM), which is a popular method
for robust segmentation using the learned shape a priori knowledge. An ASM is based
on principal component analysis (PCA) of corresponding points on object contours in
training images. The model learns the variations in shape between objects in anno-
tated data sets of patients. Manual annotation of 2D images to obtain corresponding
points is possible, but time consuming. Manual annotation of corresponding points in
3D images is difficult, requires volume or surface render techniques, and require thou-
sands of points to accurately describe for instance the surface of the mandible. This
introduces the need for automated methods for constructing corresponding models,
such as the shape context registration in chapter 8. Several other automated methods
to find the correspondences in 3D have been proposed. Brett et al. [94] introduced
points matching based on Polyhedral-Based Correspondences, Yongmei et al [95] uses
a combination of geodesic distance and surface curvature. These methods in literature
are all based on geometric properties of the shape. But there are also another class of
methods, which try to minimize the description length of an active shape model. If
corresponding points are on exact the same relative location on every object contour,
there will be less variance in the active-shape model then if points have no accurate
correspondence. The ASM description length gives a measure of the variance in the
training data. Thus minimum description length (MDL) can be used as cost function,
for moving contour points to optimize the correspondences. The first MDL algorithm
was introduced by Davies et al. [86]. In this chapter, we present an robust MDL
method for 1D, 2D and 3D corresponding point optimization, which extends on the
work of Heimann et al. [96].

75
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9.2 Minimizing Description Length

First a short description of principal component analysis for active shape models
(ASM), for more information see chapter 5. An ASM models learns from training
images in which the object contour or surface is described by line-pieces or a surface
mesh. The contour or surface is then automatically or manually annotated by points
which all have corresponding points through all training images. Then there is often a
shape alignment step, which removes translation, rotation and size differences between
the training images. The aligned (x, y) or (x, y, z) positions of the landmark points
in one data set are then grouped into a column vector:

x1 = (x1, x2, .., xn, y1, y2, .., yn, z1, z2, .., zn)
T

(9.1)

The position vectors of all training contours are then grouped into one matrix:

X = (x1,x2, ..,xn) (9.2)

PCA can be applied on the contour using singular value decomposition (SVD), but
first we need to normalize the area. This is done by subtracting a matrix X̄with all
the columns set to the mean of X and scaling by the number of samples s.

Ẋ =
1√
s− 1

(
X− X̄

)
(9.3)

Singular value decomposition of the matrix Ẋ,

Ẋ = ΦsΣV
T (9.4)

Σ is an m×n diagonal matrix with nonnegative real numbers on the diagonal and V

is an n× n unitary matrix. The eigenvalues are λ =
(

Σ2
(1,1),Σ

2
(2,2), ..,Σ

2
(n,n)

)
and Φs

a unitary matrix containing the eigenvectors.

Now we have obtained a shape model, which can convert any example contour
to model parameters. Reducing a large number of contour landmarks x to a small
number of parameters b:

b = ΦTs (x− x̄) (9.5)

These model parameters can be converted back to contour coordinates by:

x̃ = x̄ + Φsb (9.6)

The new contour coordinates x̃ is an estimate of the original contour x, constrained
by the variances in shapes learned from the training data.

The PCA model analyzes the shapes using the corresponding points in the images.
The quality of correspondence influences the amount of variance, if points are located
on exact the same relative location the variance in the model will be low, and if
inaccurate located the variance will be high. The amount of variance can be described
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by the description length. There are several equations which give a cost function for
the description length. We define our cost function for the description length F as:

F =
∑
m

Lm with Lm =

{
1 + log(λm/λcut) for λm ≥ λcut

λm/λcut for λm < λcut
(9.7)

This equation contains λcut which describes a threshold between contour-signal and
contour-noise. The contour-noise is often caused by discretization effects or/and a
inaccurate description of the object contour

λcut =
(σ
r̄

)2

(9.8)

With σ the standard deviation of the contour noise and r̄ the average radius of the
training shapes. In our experiments we use a constant value λcut = 10−5.

To find the minimum description length, we need to find the minimum of our
cost function F . Cost minimization algorithms which are memory efficient and rel-
atively fast with a large amount of unknowns are steepest-decent and quasi-Newton
optimization. They both depend on the gradient of the cost function.

Therefore we want to calculate the derivative of the singular values of the SVD
using the approach of Heimann et al. [96]:

∂dm
∂ẋij

= φimvjm (9.9)

With dm is the m-th singular value which is related to the eigenvalue by λm = d2
m. In

this equation ẋij is a value in the normalized contour coordinates matrix Ẋ, and φim
and vjm matrix values from SVD matrices Φs and V . We can use this to calculate
the derivative of our cost function:

∂F

∂ẋij
=
∑
m

Lm
∂ẋij

with
Lm
∂ẋij

=

{
2φimvjm/dm for λm ≥ λcut

2φimvjmdm/λcut for λm < λcut
(9.10)

Obtained using the following analytical derivatives:

1+log(λm/λcut)
∂ẋij

= log(λm)
∂ẋij

=
log(d2m)
∂ẋij

= 2∂dm∂ẋij
1
dm

λm/λcut
∂ẋij

=
d2m/λcut
∂ẋij

= 2
λcut

∂dm
∂ẋij

dm
(9.11)

The SVD gradient ∂F
∂Ẋ

is linearly related to the gradient of individual contour

points
[
∂F
∂xi

, ∂F∂yi ,
∂F
∂zi

]
. We cannot use the gradient directly to optimize individual

points, for two reasons. The first is that landmark points may freely move, but only
on the object surface or contour. Secondly, the absolute minimum description length
is found when all points move to one location, collapsing into a single point. But then
the landmarks points do not describe the shape of the object any longer.
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9.3 Mapping

As said in the previous section, we need to regularize the movement of points when
minimizing description length. This regularization is needed to stop points collapsing
together and to keep the points on the object surfaces. One way to achieve is this
goal, is creating an in between mapping. We first convert MDL gradients into point
movements on a line, circle or sphere, and then map those point movements back
to movements of points on the original shapes. A simple geometric object like a
line, allows movement smoothing, to keep points from collapsing, more global MDL
optimization, and multi-scale approaches.

9.3.1 Mapping to a Line

Suppose we have s data sets each containing a contour line L = [L1, L2, .., Ls]. With
a contour line Li consisting of ni connect points Li = [p1,p2...,pni ], with pj =
[xj , yj , zj ]. We want to find corresponding landmark points on each line.

The first step is to map the points onto the same geometric structure, in this case
a 1D line with length one. With point pj mapping to line position αj and range
α ∈ [0, 1]. For the initial α values we normalize the line distance d of a contour line.

d(j) = d(j − 1) + ||pj − pj−1|| with j = [2, 3, .., ni] and d(1) = 0 (9.12)

α(j) =
1

d(n)
d(j) with j = [1, 2, .., ni] (9.13)

After we mapped the contour line of every data set to the 1D line, we create m uniform
sampled landmark points αlm on the 1D line.

αlm(j) =
j − 1

m− 1
with j = [1, 2, ..,m] (9.14)

The uniform landmark points of all the data sets can then be grouped into one matrix
A = [αlm(1), αlm(2)..., αlm(s)].

A contour line consist not only of points p but also of line pieces connecting the
points. These can be described by an array F , in which each row gives the indices of
two connected points .

F =


1 2
2 3
.. ..

n− 1 n

 (9.15)

Now if we want to map a certain landmark point αlm(j) to x, y, z coordinates plm(j),
the first thing is to find the closest point on the 1D line α(j). This point is part of
one or two line pieces. We check which of the two line pieces is the one which encloses
αlm(j). Now we can calculate an interpolation value r on this line piece Fj :

r =
|α(Fj1)−αlm(j)|

|α(Fj1)−αlm(j)|+ |α(Fj2)−αlm(j)|
(9.16)
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The plm(j) coordinate is:

plm(j) = p(Fj1)(1− r) + p(Fj2)r (9.17)

When we warp all landmark points of one data sets to x, y, z coordinates, we can
re-arange them in to a vector bi. If we stack the vectors of all data sets together we
get matrix B:

B = (b1,b2, ..,bs) (9.18)

If we calculate the MDL gradient of B we get ∂F
∂Bij

, which we want to translate in

landmark movements ∂F
∂Aij :

∂F

∂Aij
=

∂F

∂Bij

∂Bij
∂Aij

(9.19)

Finite differences can be used to obtain
∂Bij
∂Aij , by mapping both αlm(j) and αlm(j)+∆h

to xyz coordinates, with ∆h > 0 set to a small value.
Now we have obtained the gradient ∂F

∂Aij we can do a step into the direction of this

gradient to minimize the description length. The size of the step can be determined
using line-search.

Instead of updating the landmark-positions on the 1D line, we can also move the
contour-points on the 1D line describing the mapping to the contours. See figure,
9.1.The main advantage is that the mapping stays valid if we change the number
of landmarks. We use a cropped Gaussian kernel to map the movement from the
landmark points to the movement of contour points:

c(d) =

{
e

−d2
2σ2 − e

−(3σ)2

2σ2 for d < 3σ
0 for d ≥ 3σ

(9.20)

The variable d gives the distance between the landmark-position and the contour-
point position on the 1D line. The update of a contour point α(k) = α(k) + ∆α(k)
of data set i with step length w is:

∆αlm(j) =
∂F

∂Aij
w (9.21)

¯∆αlm =
1

m

m∑
j=1

∆αlm(j) (9.22)

∆α(k) = −
∑m
j=1 c(|α(k)−αlm(j)|)(∆αlm − ¯∆αlm)∑m

j=1 c(|α(k)−αlm(j)|)
− ¯∆αlm (9.23)

After updating the contourpoints α on the 1D line we have to normalize them
again to the range [0, 1]:

α =
α−min(α)

max(α)−min(α)
(9.24)

The MDL process can be described by the follow steps:
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1. Align the contourlines of the data sets, for example by using the eigenvectors of
the x, y, z data.

2. Map the points which make up the aligned contourlines to 1D lines with range
[0, 1]

3. Put evenly spaced landmark points on the 1D lines

4. Warp the landmark points back to the x,y,z coordinates (of the aligned data
sets)

5. Calculate the description-length value and x,y,z gradient

6. Map the x,y,z gradient to the 1D line gradients of the data sets

7. Instead of moving the landmark points, use a Gaussian kernel to convert the
landmark movement to inverse movement of the contour points on the 1D line,
thus updating the mapping from 1D lines to contour lines. Do a line-search for
the optimal update step. This involves changing the mapping and re-warping
of the landmark points for several step lengths, to fit a polynomial which gives
an approximation of the step size with lowest description length.

8. Goto step 3, until the decrease in description length is smaller than a certain
value

9. Decrease the sigma used for the Gaussian interpolation kernel

10. Goto step 3, until the sigma is smaller than a certain value.

During optimization it is possible that the contour folds. Folding can be detected by
calculating the forward difference between contour points, if the difference is zero or
negative folding occurs. This can be prevented by using a smaller update step, or by
locally increasing the sigma of the Gaussian interpolation kernel. By keeping every
update of the map smooth and fold free also the total transformation will contain
no folding. Because the composition of diffeomorphic transformations is by definition
also diffeomorphic.

9.3.2 Mapping to a Circle

Minimizing the description-length using a circle mapping follows the same steps as
MDL on a line, but then for closed contour lines.

• When we map points to a circle we normalize the range to α ∈ [0, 2π]. For

the contour points we calculate β = 2 arctan (y−ȳ)√
(x−x̄)2+(y−ȳ)2+x−x̄

Then rotate

α (update with a constant), to make the difference between α and β as small is
possible.

• Before updating the points we normalize the update ∆α to the range [−π, π]
by adding or subtracting factors of 2π.
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(a)

(b)

(c)

(d)

(e)

Figure 9.1 Line MDL. Two data sets of a curved line both described by a few points
(x,y) are mapped to a 1D line (a). Uniform sampled landmarks are placed on the 1D
line, and mapped back to (x,y) coordinates (b). The MDL gradient is calculated for
the landmark points (c). Instead of moving the landmarks the mappings described
by the curved-line points are updated (d). Uniform sampled landmarks are placed
and mapped. Now the description-length of the landmark-model is lowered (e).
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Figure 9.2 Geographic coordinate system of the earth. Every coordinate is defined
by a latitude and longitude value.

9.3.3 Mapping to a Sphere

We want to map a triangulated surface of an closed surface object to a sphere. The
earth has a spherical shape. The commonly used geographic coordinate system, de-
scribes locations on the earth by longitude and latitude value pairs, see figure 9.2.
The triangulated surface consist of vertices V in X,Y, Z coordinates, and faces F in
which connect the vertices. The vertices mapped to a sphere can be described by U in
latitude and longitude coordinates. Thus essentially this is a mapping from V ∈ R3

to U ∈ R2. Thus mapping to a sphere is approximately equal to mapping an 3D
object to a cylinder or a plane.

The latitude on the North pole is −90 degrees and on the South Pole 90 degrees.
To define the longitude a reference line is chosen, the meridian, running from the
north to the South Pole. At the meridian the longitude is zero, if we go to westward
the Longitude decreases till -180 degrees, if we go to the east the longitude increases
till 180 degrees. At the poles the longitude is undefined, and the latitude makes a
jump from -90 to 90 degrees.

The first step to map an triangulated object surface to a sphere is defining a north
and South Pole [97]. For this reason we calculate the Euclidean distance between all
points in V , and define the points which are farthest apart as north Vn and south Vs
pole. These two points can also be chosen in another way, but they must be far apart,
to roughly preserve surface area. Instead of using the direct maximum Euclidian
distance in the mesh as in [97], we use the approximately maximum distance through
the mesh. Because that will result in an better spherical warp in the end. To do this
we select a random vertex of the mesh, and use Dijkstra’s algorithm [98] to find the
point which is furthest away from the vertex. We use the Euclidian length of the mesh
edges as cost function. After finding that point we repeat the method four times. The
poles are then selected as the points found in the last two Dijkstra iterations.

The next step is to calculate a latitude value for all vertices, starting from the
South Pole which we set to a latitude of 0, till the North pole which we set to π. This
is done by formulating the corresponding continues problem as Laplace’s equation
∇2θ = 0. We solve this equation numerically by setting the North pole to θn = π and
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Figure 9.3 Example of triangulated mesh to sphere mapping (latitude, longitude).
The pole vertices are shown in yellow (vertex 1 and 8). Steepest latitude route between
poles in green, and western neighbors connections in blue.
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θs = 0, and then assign the latitude θ of each vertex, to the average of its neighbour
vertices. We can write this as a linear systems of equations, see [97] and figure 9.3.

The third step is to define a meridian line, before we can define the longitude. This
is done by starting at the North pole vertex, and to find the neighbor vertex with the
lowest latitude value. Then we move to that neighbor and step again to the vertex
with the lowest value. In this way we walk from the north to South Pole, creating a
line of vertices, which describes a shortest path along the mesh. The meridian line is
set to this shortest path.

The fourth step is to define for every neighbor vertex of the meridian line if it is
a east or western neighbor. A face consist of three vertices, if two of the vertices are
part of the meridian line and one is neighbor, then we can flip the face to make the
order of vertices in the face equal to order of vertices on the line. If the face needs to
be flipped it is an eastern neighbor otherwise a western neighbor.

The last step to calculate the longitude starts with removing the poles from the
connected vertices, because longitude is undefined for the poles. We use the same
Laplace’s equation as by the Latitude. Because the longitude wraps around at 2π to
0 we do not just use the mean of the neighbors longitudes φ add the vertices belonging
to the meridian line but add +2π for every western neighbor connection. For western
neighbor vertices we add −2π for every connection with meridian line vertices. Before
solving the linear system we have to determine set a arbitrary vertex value to zero
(defines the orientation/meridian) in the linear system. We set the value of the first
vertex from the meridian line to zero. This can be done by adding a nonzero value to
the position of the vertex on the first row of the linear system.

Now the triangular mesh is mapped to the sphere, but it does not preserve angles
or surface. It is not possible to preserve surface, but we can optimize the mesh to make
it more surface preserving, by scaling the latitude values. Therefore we start with an
uniform mapping where x = [0, π/12, π/6, .., π] maps to y = [0, π/n, 2π/n, .., π], but
then we change the values in y to minimize a surface preserving cost function. The
original latitudes are warped using linear interpolation using the mapping x → y.
Our volume preserving cost function is defined as:

d(i) = max(y(i+ 1)− y(i), 0) with i = 0...n− 1

E =
∑m
i=0

(
a1(i)∑m
j=0 a1(j) −

a0(i)∑m
j=0 a0(j)

)2

+ 1
n

∑n
i=0 d(i)

(9.25)

With a1 the area of the faces on the sphere and a0 the area of the faces in the mesh,
and m the number of faces. It contains a distance constraint to keep the mapping
from folding over

9.4 Optimizing on a Sphere

For 3D triangulated objects such as a mandible, we optimize the points not directly
with MDL, because then points will move away from the surface. We use a spherical
mapping to constrain the movement of points to the surface. The spherical mapping
maps x,y,z to latitude, longitude thus R3 → R2. This Spherical mapping also allows
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smoothing and interpolation of points during MDL optimization. It consist of the
following steps

1. Map the triangulation of the object in all data sets to spheres.

2. Define a number of approximately uniform distributed landmarks on each sphere

3. Map the uniform landmarks back to object coordinates. This can be done by
starting a ray from the landmark on the sphere to the center of the sphere. Cal-
culate the intersection with the spherical deformed object triangulation. Con-
vert the x,y,z location of the intersection to barycentric coordinates of the in-
tersected triangle. Use the barycentric coordinates to find the x,y,z location on
the same face in the original object.

4. Calculate the MDL gradient of the spherical landmarks which where mapped
back to the objects coordinates.

5. Convert the x,y,z MDL gradients on the object back to sphere x,y,z gradients

6. Convert the x,y,z sphere gradients to longitude, latitude gradients on the sphere

7. Instead of moving the uniform distributed landmark points with the found lon-
gitude and latitude, we warp the vertices of the triangulation in the opposite
direction. This is done by interpolation of the gradients of the landmark points
to the vertices using a Gaussian kernel. To determine the distance for the Gaus-
sian kernel, we use the circle distance between a vertex and the landmark points.
To find the optimal step-size we use a line-search method on the MDL error.

8. We repeat above steps, until convergence. Then we increase the number of
uniform distributed landmark points and lower the sigma of the interpolation
kernel. In this way we obtain a course to fine MDL registration of corresponding
landmark points

If we update the latitude or longitude of a vertex with a certain step value as described
above, the resulting Euclidian movement distance will vary depending on the initial
place of the vertex. Also there are update problems of the longitude at the poles
and meridian. Because the longitude is undefined on the poles, and wraps around
at the meridian. Heimann et al. [96], uses truncated Gaussian kernels which do
not cover the poles of the sphere. Random rotation matrices are used to frequently
change the location of the poles, to still optimize the whole object during the MDL
optimization. Disadvantage of this approach is that MDL result is highly dependable
on the generated random rotation matrices.

Therefore we use for every landmark point a private coordinate system, in which
the landmarks longitude and latitude are chosen φ = π θ = 0, to keep them as
far away from the poles and meridian in their own coordinate system as possible.
The private coordinate system is defined by a rotation matrix constructed from the
position vector of the landmark point pointing to the center of the sphere. Going
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Table 9.1 The MDL parameters of the hand photos.

parameter value information
σ [2.3, 2.0, 1.7, 1.5, Sigma of Gaussian interpolation kernel

1.2, 1.0, 0.7, 0.5, 0.4]
nLandmarks 120 Number of landmarks used for optimization

step 10−3 finite difference step
ftol 10−2 Minimum update value, otherwise next scale

from a vector to a rotation matrix is ill defined, thus we use a random vector to fix
the rotation around the landmark position vector.

Now if we obtain the x,y,z sphere update of a landmark point, we rotate the
object sphere vertices and landmark point with the obtained rotation matrix, convert
the update to latitude and longitude update. Then update the object vertex sphere
positions by interpolation of the latitude and longitude update from the landmark
point using a Gaussian kernel. These steps are repeated for all the landmark points,
before going to the next MDL iteration.

9.5 Results

9.5.1 Hand Photos

We have acquired 10 photos of hands with a resolution of 750× 500. We segment the
hand from the photos using manual pixel based segmentation. We have obtained the
contour described by line-pieces with marching squares. The number of points in the
contours varies from 558 till 754. We place 10 annotation landmarks on position such
as the finger tip, in every data set. Then we run the MDL optimization as described
before, see the parameters in 9.1.

The mapping of a hand contour to the circle is shown in figure 9.4. We warped the
landmarks of one data set to all other data sets using the obtained correspondences,
see figure 9.5. The pixel distance between the manual landmarks during the process,
and description length value, are shown in 9.6.

9.5.2 Mandible

We manually segmented the mandible in 13 patient CBCT data sets. The data set
both contains dentate and edentate mandibles. After manual voxel based segmenta-
tion we converted the mandible segmentations to triangulated surfaces descriptions
with marching cubes. Then the vertices where used as input for the shape context
registration described in the previous chapter 8. The resulting surface descriptions
in which all the data sets has the same amount of vertices, and in which the vertices
have approximately correspondence between the data sets are used as input of our
3D MDL optimization.
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Figure 9.4 Mapping of contour to circle for MDL optimization.

Figure 9.5 Hand Contours after MDL optimization. We warped the manual land-
marks of one data set to the other data sets, these points are shown in red.
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Figure 9.6 Distance between manual landmarks during MDL optimization of the
hand contours. Also shown sigma of the interpolation kernel, and description length.

Table 9.2 The MDL parameters of the mandible.

parameter value information
σ [0.5, 0.4, 0.3] Sigma of Gaussian interpolation kernel

nLandmarks 2562 Number of landmarks used for MDL optimization
step 10−3 finite difference step
ftol 10−2 Miminum MDL value update, otherwise new scale

The shape context registration step for initial correspondences was used, for two
reasons. The MDL is slow with a large amount of optimization landmarks, so we
optimize with a small amount of landmarks. All data set has the same amount of ver-
tices (11022), thus we can use them to still obtain a dense surface description, with a
small amount of landmarks (2562). The second reason, is that the minimum descrip-
tion length is low if points locally cluster into the same coordinate. This decreases
the amount of points in other regions, effectively lowering the quality of the object
description. This happened when we started from unaligned surface descriptions.

The parameters which where use to obtain the MDL result are shown in table 9.2.
Two data sets with the intial MDL landmark positions and final positions are shown
in figure 9.7, and description-length in figure 9.8. The figure shows also shows that
the Coronoid Process does not contain MDL landmarks. This is due to the fact that
the MDL landmarks where approximately uniformly distributed on the sphere. But
the mapping was not area-preserving, and the coronoid process was mapped to a very
small spherical area, because it is a sharp structure.
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(a) (b)

Figure 9.7 Results of the MDL optimization . Showing two of the mandibles, with
the black dots the initial MDL landmarks and white dots the landmarks after running
the MDL optimization.
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Figure 9.8 MDL optimalization of the mandible surfaces. We show the decrease of
description length and sigma of the interpolation kernel, during the MDL iterations.
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(a) (b)

(c) (d)

(e)

Figure 9.9 Mapping of the triangulated surface of the mandible to a sphere. Sub-
figure a shows the mandible with the Meridian. Sub-figure b and c show respectively
the latitude and longitude calculate for the vertices of the mandible, sub-figure d and
e the mandible latitude and longitude shown as sphere .
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9.6 Discussion

The 3D MDL introduced by Heimann et al. [96] was implemented and extended with
some small improvements, as described in this chapter. If we look at the short result
section, we see that the algorithm decreases the description length of the model, but
has some problems:

• The spherical mapping is not area preserving. This means that the landmarks
are approximately uniform distributed on the sphere but not on the mandible
itself. Especially small sharp structures will map to small spherical areas, thus
will probably not be optimized. The sigma of the Gaussian interpolation kernel
is constant but the effect on the object itself will vary duo to the area change
after mapping.

• The MDL method not only aligns corresponding points but also causes landmark
points to cluster if the smoothing regularization becomes smaller. Because if lo-
cal points collapse to a single point the description length also becomes smaller,
resulting a poor description of the original object.

• The MDL method is based on PCA, thus assumes a Gaussian distribution of the
landmarks. From some biomedical-shapes exist no negative variant, for example
a human cannot have a negative length. Thus if there is a small elevation in
one mandible the method can wrongly align the elevation with a small dip in
another mandible.

Our recommendations to solve these disadvantages are:

• Distribute the MDL landmarks uniform on the original objects instead of on
the sphere. Then all so spiky objects will contain landmarks.

• Don’t use a Gaussian kernel to interpolate the MDL landmark moment to the
vertices, but adapt the sigma and shape to the amount of object area described
in that part of the sphere.

• Include an intensity or Jacobian based cost function, to the MDL process. To
stop landmark points to locally collapse into a single coordinate.
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10
Results

We evaluate in this chapter the introduced mandibular canal localization methods.
First we use the LK tracking method of chapter 4 and segment the mandibular canal
from 13 CBCT data sets. Then we evaluate the performance of the registration
methods, B-spline registration from Rueckert et al. [60] and demon registration [66].
We also test the performance of a trained active shape model (ASM) [25] and active
appearance model (AAM) [26] on the CBCT data. The performance of the methods
is compared on accuracy of mandibular bone segmentation, and on distance to expert
segmentation of the mandibular canals.

In the first section we introduce the CBCT training data, and describe the provided
expert annotations. In the second section we describe two basic data pre-processing
steps. In the third section we use the LK tracking method to segment the mandibular
canals in the data sets. In the fourth section we describe the results of the registration
methods. Followed by a section with the results of the active shape model, and a
section about the active appearance model. Then a section comparing the ASM and
AAM method with the registration methods. Followed by a section with methods to
improve the ASM result, and a section about improving the AAM result. Finally, a
section with the conclusions.

10.1 Data

For our experiments we obtained 13 CBCT data sets from 13 patient heads. These
data sets where provided by the department of oral and maxillofacial surgery, Rad-
boud university Nijmegen medical centre in the Netherlands. The mandibular canals
of all patients are annotated by medical experts, and data segmented in two classes,

93
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Table 10.1 Description of the CBCT data sets of the patients based on the DICOM
information tags.

id edentate/dentate age male/female resolution
1 e 26 m 0.4
2 d 25 m 0.4
3 d 25 m 0.4
4 e . f 0.4
5 e 58 f 0.4
6 d 30 m 0.4
7 e 39 m 0.3
8 d . f 0.4
9 d . f 0.4
10 d 53 m 0.4
11 e 69 f 0.3
12 e . . 0.4
13 d 41 m 0.3

mandible and non-mandible voxels. The annotation of the mandibular canals consist
of a list of manual selected connected points in the center of the mandibular canals.

The data was acquired on an i-CAT CBCT scanner, with peak voltage 120kV ,
X-ray tube current 48 mA, frame time 67 ms. The Data consist of 6 people without
teeth edentate and 7 people with teeth dentate. Sex of the patients, 7 male, 6 female
and 1 not specified in the Dicom tags. Age of the patients with known age varies
between 26 and 69. For more information see table 10.1. In figure 10.1 we show
illustrating images of two patients data sets.

10.2 Pre-processing

We can describe the distance on a line of connect points by d

d(i) =

n∑
i=1

||xi − xi−1| | (10.1)

To obtain a dense description we re-interpolated the connected line to make it more
uniform. We use spline interpolation with as basis variable d to create 80 uniform
sampled points along every annotated canal. The Hounsfield values for bone and
tissue varies highly between data sets in our CBCT data. Therefore we scale the
original values to decrease the variance, between data sets:

Ih = Io − Ĩo (10.2)

With Io the original intensity values in a data set, Ih the corrected Hounsfield units.
The variable Ĩo is the median of all Io values above −700, thus without air voxels.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 10.1 Example data sets of two patients. Sub figure a and b show MIP
(Maximum Intensity Projection) images of both patients, Sub figure c and d a CBCT
slice. Sub figure e and f the mandibular canal annotated by a point in a slice. Sub
figure g, and h, show the segmented mandible including the annotated mandibular
canals of the two patients.
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Table 10.2 The LK nerve tracking parameters.

parameter value information
st 14× 14 Template size
sb 5 border for image derivatives
σs 0.7 Image derivative sigma
σl 1.5 Image derivative sigma
ns 3 LK iterations with σs, followed by σl
np 7 samples used to calculate normal

The default parameters in our registration algorithms are experimentally opti-
mized for a gray value range of 0− 1. Thus data sets must be first converted to that
range, to use the defaults. For our CBCT data we scale from Hounsfield units to gray
values with the following equation:

In =


0 if Ih < −200
1 if Ih > 1500

Ih+200
1700 otherwise

(10.3)

The equation has two boundaries the first −200 is chosen to prevent the registration
algorithms to focus too much at the skin air boundary during optimization. The
second 1500 is chosen to make the registration algorithm more robust against dental
implants and other restorative material. By mapping high metal based values closer
to the range of bone values.

10.3 Experiment Tracking

In this experiment we evaluate the performance of the LK nerve tracking introduced
in chapter 4. We use the same tracking parameters as in chapter 4, see table 10.2.
The tracking method starts from a user selected point in the mandibular canal. We
use the expert annotation of the mandibular canals to pick for every canal a starting
point, which is located about 20mm from the mental foramen.

The tracking is performed on all the 13 CBCT scans. The tracking does not
automatically stop at the ends of the mandibular canal, therefore we manually remove
the parts outside the canal. The distance between the tracking results and expert
annotations are shown in table 10.3. The average mean euclidian distance to expert
annotation is 3.01mm, with a standard deviation to the mean of 1.34mm. The average
standard deviation of the distance error is 2.42mm. The high mandibular canal
localization error is mainly caused by template drift at the ends of the mandibular
canal, see figure 10.2.
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Figure 10.2 LK mandibular canal tracking accuracy. The table shows the euclidian
distance between the mandibular canal annotation from the LK tracking and expert
annotation. Subfigure a shows the distance errors of the right mandibular canal, and
subfigure b of the left canal.
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Table 10.3 LK tracking, mandibular canal localization accuracy. The table shows
the euclidian distance between the annotations of the LK tracking method and the ex-
pert mandibular canal annotations. Mean, standard deviation and maximum distance
are shown for the right and left mandibular canal.

Right Left
Id mean STD max mean STD max
1 2.09 1.22 5.26 2.43 1.70 6.01
2 4.76 4.05 19.62 5.09 2.27 15.42
3 4.59 4.14 20.99 5.19 4.33 20.28
4 4.01 3.44 9.33 3.48 2.06 7.23
5 2.04 0.94 5.28 3.52 1.56 6.43
6 3.49 3.93 21.20 4.01 4.03 21.22
7 1.22 0.96 6.24 1.17 0.96 8.13
8 2.25 2.46 13.75 2.94 3.40 15.65
9 2.48 2.08 8.10 1.72 1.30 6.06
10 1.93 1.87 11.69 4.85 2.02 7.58
11 0.98 0.78 7.16 0.96 0.83 4.58
12 4.24 4.11 16.52 3.98 3.79 16.32
13 2.08 3.23 28.94 2.86 1.42 16.68

10.4 Experiment Registration

In this experiment we use the two introduced registration methods, demon registration
and B-spline registration (see chapters 6, 7) to find the mandibular nerve location.
These methods are based on aligning two images, in which one of the images is
deformed to align to a static image. Most of our data sets consist of a whole head
instead of only the mandible, thus our first step is to crop the data sets to only
include the mandible. Instead of constructing an mandible atlas from multiple training
images, we use a single image as atlas for mandibular canal segmentation.

To select a good atlas image, we first register all the training images to the test
image using an affine registration (see chapter 7). Then we swap the roles, and register
the test-image to all training images. Then we determine the squared differences
(SSD) between registered test image and every atlas image, and every registered atlas
image and test image. To get a robust measure of similarity we take the mean of the
SSD’s of both registration results. The training-image with the lowest SSD is then
select as atlas image for the test image, see table 10.4. As you can see in the table,
the best match for a dentate data set is usually a dentate data set (77%). The best
match for a female is sometimes a male mandible or the other way around.

We test the performance of non-rigid registration on mandible segmentation and
mandibular canal segmentation by non-rigid registration of every CBCT data set to
their best match. Then we use the B-spline grid or transformation field to also warp
the manual mandible segmentation of the segmentation. Performance of the mandible
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Table 10.4 Similarity from affine SSD, showing the id’s of the six best matches
for every data set. Followed by the DICOM properties of each data set, first letter
indicates dentate(d) or edentate(e), second letter indicate female(f) or male(m) or
unknown(.).

1 2 3 4 5 6 7 8 9 10 11 12 13
12 12 9 12 1 3 13 2 3 12 12 1 10
5 5 13 5 4 2 5 3 2 5 4 4 5
4 1 12 1 12 12 11 5 4 1 5 5 1
10 10 5 11 10 11 1 11 12 4 1 10 12
11 4 1 10 11 9 12 1 10 13 10 11 3
13 11 2 2 13 8 10 12 1 11 2 2 2
em dm dm ef ef dm em df df dm ef e. dm
e. e. df e. em dm dm dm dm e. e. em dm
ef ef dm ef ef dm ef dm dm ef ef ef ef
ef em e. em e. e. ef ef ef em ef ef em

dm dm ef ef dm ef em ef e. ef em dm e.
ef ef em dm ef df e. em dm dm dm ef dm

dm ef dm dm dm df dm e. em ef dm dm dm

Table 10.5 The B-spline registration parameters.

parameter value information
Similarity SSD Sum of squared differences
MaxRef 2 Refinements of Initial Spacing 32x32x32

Registration Both Affine and nonrigid
Interpolation Linear Image interpolation

Table 10.6 The Demon registration parameters.

parameter value information
Similarity p Intensity difference
MaxRef 2 Smallest registration scale 0.25

Registration Both Affine and nonrigid
σFluid 4 Gaussian smoothing of update field
α 4 Noise constant

σDiff 1 Gaussian smooth of transformation field
Interpolation Linear Image interpolation
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Table 10.7 B-spline atlas registration bone segmentation accuracy. Dice coefficient
describing the overlap, of the mandible described by the registered atlas, and the
manual segmented mandibular bone.

Id test Id atlas Dice Coefficient
1 12 0.78
2 12 0.80
3 9 0.78
4 12 0.77
5 1 0.77
6 3 0.71
7 13 0.55
8 2 0.70
9 3 0.83
10 12 0.83
11 12 0.83
12 1 0.79
13 10 0.68

segmentation can then be calculated using the dice coefficient:

s =
2|X ∩ Y |
|X|+ |Y |

(10.4)

With X ∩ Y the number of overlapping voxels, and |X| the number of voxels in the
static data set and |Y | the number of pixels in the warped manual segmented data
set. We can describe the performance of mandibular canal segmentation. By the
point to line distance from all mandibular canal points of the registered scan to line
of mandibular canal points of the static scan, and the other way around.

The parameters used for the B-spline registration can be found in table 10.5 and
the parameters for the demon registration can be found in table 10.6. The Dice
coefficients of the registered atlas images to the data sets can be found in table 10.7
and table 10.8. The distance between the manual selected and mandibular canal from
the registered atlas image can be found in table and 10.9 table 10.10.

10.5 Experiment Active Shape Model

An active shape model (ASM) in 3D uses surface-normals to search for the ideal
landmark position during ASM segmentation. The mandibular canals are described
by lines of connect points. Line normals are not fixed but can rotate around the line.
To fix this degree of freedom we have to add extra information. Because our surface
model is based on a triangulation, we choose to convert the line description of the
mandibular canal to a triangulated hollow tube, with a radius of one pixel (0.4mm).
Therefore we first have to define a normal plane on every point of the line. We do
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Table 10.8 Demon atlas registration bone segmentation accuracy. Dice coefficient
describing the overlap, of the mandible described by the registered atlas, and the
manual segmented mandibular bone.

Id test Id atlas Dice Coefficient
1 12 0.83
2 12 0.75
3 9 0.83
4 12 0.71
5 1 0.74
6 3 0.86
7 13 0.54
8 2 0.89
9 3 0.87
10 12 0.72
11 12 0.86
12 1 0.78
13 10 0.54

Table 10.9 B-spline registration, mandibular canal localization accuracy. The table
shows the euclidian distance between the warped mandibular canal of the registered
atlas and the expert mandibular canal segmentation. Mean, standard deviation and
maximum distance are shown for the right and left mandibular canal.

Right Left
Id mean STD max mean STD max
1 3.54 1.76 7.83 4.75 2.88 12.33
2 2.08 1.04 4.20 1.66 2.05 8.34
3 3.65 1.48 11.48 3.32 1.72 10.46
4 1.67 0.70 4.39 2.40 1.52 7.18
5 2.85 1.95 6.22 3.14 1.44 6.51
6 3.88 2.02 6.52 4.32 1.69 7.07
7 8.65 3.79 13.40 12.8 4.32 17.50
8 3.22 1.32 5.18 2.28 2.11 13.04
9 3.28 1.03 8.99 3.10 1.15 8.34
10 2.08 1.03 4.87 2.61 1.23 5.76
11 1.90 0.86 4.93 2.67 1.64 7.29
12 3.43 1.59 8.01 5.97 3.40 15.27
13 5.89 2.37 12.93 6.52 2.89 14.24
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Table 10.10 Demon registration, mandibular canal localization accuracy. The table
shows the euclidian distance between the warped mandibular canal of the registered
atlas and the expert mandibular canal segmentation. Mean, standard deviation and
maximum distance are shown for the right and left mandibular canal.

Right Left
Id mean std max mean std max
1 3.63 1.56 9.01 6.31 3.96 19.75
2 2.51 2.02 9.60 2.39 3.46 13.87
3 6.82 2.88 13.48 6.03 2.56 10.55
4 1.90 1.32 5.38 2.48 1.57 6.91
5 3.26 2.27 7.60 2.33 2.00 7.85
6 5.38 3.36 13.83 5.52 3.28 15.64
7 19.50 8.72 32.04 15.48 20.73 19.66
8 3.34 1.13 6.00 3.49 2.97 16.50
9 3.58 1.83 7.73 3.00 1.61 7.66
10 3.98 2.18 8.15 5.26 2.53 9.43
11 2.29 1.37 7.54 2.55 1.99 10.37
12 4.38 1.89 9.08 6.20 3.42 12.50
13 4.05 1.45 6.34 5.06 1.36 8.16

this for the first line piece by:

vl = x1−x2

||x1−x2||

na =
vl− vr

vrvl
T

||vl− vr
vrvl

T ||

nb = vl×na
||vl×na||

(10.5)

With vr a random normalized vector which is non-collinear with v1. Now we can
construct a circle of vertices vc1 around the line piece by:

α = [0, 1
4π, .., 1

3
4π] + αo

vc1 = cos(α)na + sin(α)nb
(10.6)

In our case we want the circle vertices vc1 in one data set to be oriented in the
same way as in another data set thus we use the constant vector vr = [0, 0, 1]. We
calculate the circle vertices of all other line points in the same way. We choose the
rotation offset αo to minimize the euclidian distance between vertices of the current
circle and the previous circle of the mandibular canal. After calculating all circle
vertices we connect the neighbor circles by faces, now we have obtain a triangulated
description of our mandibular canal. By taking the mean of vertices belonging to the
same circle we can obtain a line description by points after ASM segmentation.

Table 10.11 shows the setting we usefor the training our ASM. To test the our
ASM we use a leave-one-out scheme, where we use one trainingset as test image and
use the other trainingsets to train an ASM. To test mandible segmentation perfor-
mance we calculate the dice coefficient between the manual mandible classification
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Table 10.11 The ASM segmentation parameters.

parameter value information
k 8 Length of landmark profile
ns 6 Search length in pixels

nscales 3 resolution scales

m 3 limit shape to m
√
λ

nsearch 15 Number of iterations

Table 10.12 ASM bone segmentation accuracy. Dice coefficient describing the
overlap, of the mandible described by the registered ASM, and the manual segmented
mandibular bone.

Id test Dice Coefficient
1 0.72
2 0.86
3 0.82
4 0.67
5 0.69
6 0.77
7 0.68
8 0.72
9 0.76
10 0.76
11 0.77
12 0.76
13 0.77

and discretized registration surface, see table 10.12. We use for the mandibular canal
accuracy the line to point distance, from expert annotation to registration result and
the other way around, see table 10.13 and figure 10.3.

10.6 Experiment Active Appearance Model

We have also tested an active appearance model (AAM). Our landmark points include
the object surface vertices and the expert annotation points of both nerve canals (90
points each).

Table 10.14 shows the setting we use For the training our AAM. To test the our
AAM we use a leave-one-out scheme, where we use one training set as test image and
use the other trainingsets to train an AAM. To test mandible segmentation perfor-
mance we calculate the dice coefficient between the manual mandible classification
and discretized registration surface, see table 10.15. We use for the mandibular canal
accuracy the line to point distance, from manual annotation to registration result and
the other way around, see table 10.16.
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Figure 10.3 ASM mandibular canal localization accuracy. The table shows the
euclidian distance between the mandibular canal annotation from the ASM model
and expert annotation. Subfigure a shows the distance errors of the right mandibular
canal, and subfigure b of the left canal.
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Table 10.13 ASM mandibular canal localization accuracy. The table shows the
euclidian distance between the annotations from the ASM model and expert annota-
tions of the mandibular canal. Mean, standard deviation and maximum distance are
shown for the right and left mandibular canal.

Right Left
Id mean std max mean std max
1 1.79 1.02 4.60 3.68 1.65 8.98
2 1.51 0.83 4.70 1.79 0.51 3.24
3 3.35 1.64 8.74 2.75 1.17 6.54
4 2.14 1.31 6.88 3.02 1.27 5.65
5 2.42 1.39 5.28 3.19 2.71 9.94
6 1.55 2.06 16.12 3.21 1.48 9.71
7 1.48 0.58 5.87 2.27 1.59 9.22
8 2.69 1.85 7.66 2.93 1.93 9.57
9 2.95 1.97 9.90 2.46 1.56 8.68
10 2.38 1.14 6.16 2.01 1.15 5.79
11 1.52 0.67 5.64 1.64 1.31 6.08
12 2.24 1.05 4.97 2.32 1.60 6.57
13 1.82 0.93 3.87 1.22 0.85 5.40

Table 10.14 The AAM training and segmentation parameters.

parameter value information
nb 5 Border added (pixels)
s [150 150 150] Texture size used (pixels)

nscales 4 Number of AAM image resolutions.
nsearch 15 Number of iterations

10.7 Methods Comparison

The mandibular bone segmentation accuracy is described by the Dice coefficient,
which gives the overlap between the manual and automatic segmentations. The mean
and standard deviation of the Dice coefficient from the results of the B-spline, demon,
ASM, and AAM segmentation are:

• B-spline registration, mean 0.76, STD 0.08

• Demon registration, mean 0.76, STD 0.12

• ASM, mean 0.75, STD 0.05

• AAM, mean 0.76, STD 0.18

If we look at segmentation of the mandible the methods perform approximately
equally well. The ASM method has a slightly lower dice coefficient but also pro-
duces slightly more constant results.
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Table 10.15 AAM bone segmentation accuracy. Dice coefficient describing the
overlap, of the mandible described by the registered AAM, and the manual segmented
mandibular bone.

Id test Dice Coefficient
1 0.71
2 0.88
3 0.84
4 0.73
5 0.80
6 0.85
7 0.17
8 0.78
9 0.81
10 0.83
11 0.81
12 0.87
13 0.82

Table 10.16 AAM mandibular canal localization accuracy. The table shows the
euclidian distance between the mandibular canal annotations of the AAM model and
expert segmented annotations. Mean, standard deviation and maximum distance are
shown for the right and left mandibular canal.

Right Left
Id mean std max mean std max
1 1.68 0.98 4.26 3.87 2.05 8.47
2 1.38 0.70 3.91 1.57 0.59 4.14
3 3.20 0.91 5.94 2.76 1.06 6.10
4 1.79 0.64 4.22 1.48 0.65 4.08
5 1.48 0.84 2.88 1.62 0.89 3.29
6 1.68 1.27 8.32 3.15 1.33 7.95
7 1.65 0.77 3.09 2.61 1.44 10.70
8 1.48 0.91 3.21 1.58 1.10 6.81
9 2.91 1.38 9.44 2.64 1.12 5.12
10 1.66 0.95 6.35 1.55 0.75 3.80
11 1.45 0.85 5.29 1.33 0.92 4.10
12 1.88 1.01 4.60 2.22 1.80 7.54
13 1.29 0.45 3.31 1.77 0.43 3.04
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We describe the mandibular canal segmentation accuracy, by the euclidian dis-
tance from expert annotation to automatic annotation. The average mean distance
and standard deviation of the mean distance, for LK tracking, B-spline, demon, ASM
and AAM segmentation are:

• LK tracking, mean 3.01mm, STD 1.34mm

• B-spline registration, mean 3.91mm, STD 2.45mm

• Demon registration, mean 5.02mm, STD 3.98mm

• ASM, mean 2.27mm, STD 0.69mm

• AAM, mean 1.99mm, STD 0.70mm

The average standard deviation of automatic annotation to expert annotation of the
mandibular canal, for the LK tracking, B-spline, demon, ASM and AAM segmentation
are:

• LK tracking, mean 2.42mm

• B-spline registration, mean 1.88mm

• Demon registration, mean 3.21mm

• ASM, mean 1.34mm

• AAM, mean 0.99mm

As can be seen the demon registration produces the worst result, with an average
distance to the annotated mandibular canal of 5mm, combined with a large standard
deviation. The LK tracking and B-spline registration have an average distance to
the annotated mandibular canal of respectively 3mm and 4mm. The AAM and ASM
methods have low average distances. With AAM the lowest average distance 1.99mm.

10.8 Improving the ASM Results

The number of training scans is 12 for the ASM and AAM in a leave one out ex-
periment. These scans only describe a small part of all possible variations in the
mandible. PCA uses the correlation matrix, and with such a small data set surface
deformations can look correlated while they are not correlated at all. Kainmueller et
al. [33] used more than 100 data sets to build there ASM model.

Therefore we use three methods of improving our ASM results, these are intro-
duced in the next subsections.
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Table 10.17 The snake parameters.

parameter value information
γ 1 Time step

Itt 15 Iterations
σ1 2 Sigma used for image derivatives
wline 0.04 Attraction to white lines
wedge 2 Attraction to edges
σ2 2 Sigma for gradient of edge energy
µ 0.2 GVF noise constant
Ittg 5 GVF iterations
α 0.2 Membrane energy
β 0.2 Thin plate energy
δ 0.1 Balloon force
κ 2 Weight of image force
λ 0.8 Surface normal alignment

10.8.1 Snake

An active contour or snake [54], is a contour of connected lines as in a ASM. The main
difference is that in a snake the segmentation is regularized by internal forces from
physics such as a bending force, and an ASM by learned shape variations. The search
in a snake is based on edge attractions through image-gradients and pixel intensities.
We use an 3D implementation of a snake [55], including gradient vector flow (GVF)
[99] for to extend the attraction of edges to a further distance.

We use the surface of the bone produced by the ASM as initial shape for our
snake, and then run the snake, to get an better alignment of the moving surface with
the bone in the data set. Parameters used are available in table 10.17

After snake registration we merge our new bone-surface with the existing ASM
surfaces of the mandibular canal. Then we convert the combined surface to ASM
model parameters and back to x, y, z coordinates. Now we have obtained new x, y, z
coordinates for our nerves, which correspond to the new snake aligned bone-surface.
The resulting dice coefficients of the data sets can be found in table 10.18, and new
nerve distances in table 10.19. The snake surface optimization increases our Dice
coefficient from 0.75 to 0.80. The mean distance to expert segmentation increases
from 2.27mm to 2.33mm.

10.8.2 Anisotropic Diffusion Filtering

In chapter 3, we introduced edge enhancing anisotropic diffusion filtering. We filtered
the data sets with this method using the parameters in table 10.20. Then we did
the ASM segmentation again, but now on the data sets with the diffusion filtered
results, followed by snake segmentation. After running the segmentation we didn’t
not notice any differences in the Dice coefficients. See table 10.20, for the distance
between automatic localization and manual annotations. As you can see the distance
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Table 10.18 Snake optimization of the surface from the ASM, bone segmentation
performance. Dice coefficient between registered mandibular bone surface and manual
segmented bone.

Id test Dice Coefficient
1 0.81
2 0.92
3 0.87
4 0.76
5 0.77
6 0.83
7 0.59
8 0.78
9 0.82
10 0.81
11 0.84
12 0.77
13 0.79

Table 10.19 Distance between automatic and manual segmented mandibular canal
after ASM and snake optimization.

Right Left
Id mean std max mean std max
1 1.82 1.01 4.71 3.66 1.66 8.91
2 1.50 0.83 4.69 1.81 0.52 3.23
3 3.43 1.69 9.06 2.82 1.16 6.55
4 2.24 1.27 6.87 2.97 1.24 5.56
5 2.40 1.37 5.26 3.22 2.70 9.96
6 1.57 2.05 16.1 3.21 1.52 9.83
7 1.49 0.59 5.92 2.28 1.59 9.24
8 2.66 1.87 7.64 2.98 1.90 9.63
9 2.97 1.97 9.95 2.44 1.53 8.56
10 2.40 1.16 6.19 2.03 1.15 5.79
11 1.52 0.67 5.63 1.64 1.3 6.04
12 2.23 1.05 4.95 2.32 1.61 6.61
13 1.84 0.94 3.85 1.25 0.85 5.40
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Table 10.20 Distance between automatic and manual segmented mandibular canal.
Automatic results after anisotropic filtering and snake optimization.

Right Left
Id mean std max mean std max
1 1.52 0.97 4.16 3.71 1.27 8.81
2 1.48 0.84 4.76 1.81 0.54 3.49
3 3.28 1.74 8.98 2.76 1.16 6.36
4 2.68 1.47 7.69 3.29 1.38 6.11
5 4.00 1.57 6.74 3.68 3.29 11.9
6 1.80 1.83 15.1 3.38 1.45 9.12
7 2.46 0.85 4.73 2.77 1.90 7.34
8 2.74 1.88 7.78 2.87 1.92 9.06
9 2.99 2.01 10.3 2.47 1.54 8.73
10 3.09 1.51 5.46 2.64 1.42 7.60
11 1.47 0.59 5.07 1.92 1.45 6.19
12 2.75 1.16 4.91 2.57 1.87 7.17
13 2.03 0.96 4.22 1.11 0.74 5.51

values sometimes improve a few tenths of a millimeter, but the mean distance value
increases to 2.59mm.

10.8.3 Fast Marching

Almost all recent mandibular canal segmentation papers use Dijkstra’s algorithm
[98], or Fast Marching [100] to improve the location of the nerve. This are distance
algorithms which are useful to calculate the shortest path between two points. In
those papers they assume that the mandibular canal has a lower intensity than the
surroundings. But this is not true for our data, probably because of the low imaging
dose. Most parts of the mandibular canal have a circular bony wall with a high
Hounsfield value. We will use this information later on to make a filter to lower the
intensities inside the canal.

But first we assume that the canal has a low intensity already. Thus we can make
a speed map in which speed inversely related to intensity. In this way the shortest
path between end-points of the mandibular canal, will be the canal it self. Tissue
outside the bone also has a low intensity, thus to prevent the shortest path from
running outside the bone, we use the AAM snake optimized bone-surface to select
the background region and set all those pixels to a high pixel value.

As next step we use the vertices of the canal surface from previous steps, and
calculate the curved pixel length lcanal along the canal. Then we construct uniform
distributed normal planes along the channel. Now we can warp the local neighborhood
of the canal to a small volume Il of dimensions 4mm × 4mm × lcanal . The curved
canal in the CBCT data is a straight line in the new volume Il . To make the channel
black, we use the following filter, which is the inverse of a slice through the bony
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Table 10.21 Distance between automatic and manual segmented mandibular canal.
Automatic results after snake optimization and fast marching shortest path optimiza-
tion.

Right Left
Id mean std max mean std max
1 2.18 0.99 4.36 2.78 1.16 5.32
2 0.93 0.81 4.09 0.94 0.71 3.11
3 3.78 1.70 8.75 2.83 1.09 6.54
4 2.26 1.30 6.42 3.11 1.25 5.49
5 2.45 1.67 5.38 3.51 2.90 9.94
6 1.55 2.02 16.1 3.26 1.61 9.70
7 1.57 0.66 5.87 2.40 1.43 9.29
8 2.92 1.55 7.47 3.03 1.89 9.55
9 3.39 2.10 9.90 2.58 1.79 8.68
10 1.86 1.01 6.55 2.27 1.11 5.79
11 1.48 0.69 5.50 1.98 1.22 5.96
12 2.14 0.89 4.71 2.45 1.54 6.53
13 1.71 0.94 3.58 1.45 0.78 5.40

canal:

Hc =
1

30



−5 −6 −3 −1 −3 −6 −5
−6 0 3 4 3 0 −6
−3 3 5 6 5 3 −3
−1 4 6 6 6 4 −1
−3 3 5 6 5 3 −3
−6 0 3 4 3 0 −6
−5 −6 −3 −1 −3 −6 −5


+

6

1470
(10.7)

This filter is use as convolution filter on every slice of Il corresponding to a normal
plane of the curved canal, creating the volume If . Then we set our final volume Into
the average of the unfiltered volume Il and filtered volume If .

To convert the intensities of In to a speed map S we use:

S = e(In∗Hg) + e−||∇In|| (10.8)

With Hg a Gaussian kernel with sigma 1.5. We define the source and sink as the
end points of our mandibular canal estimation. And after running fast marching with
speed map S we detect the shortest route using Runge-Kutta type RK4. Then we
warp the shortest route back to the original volume.

The resulting distances to expert segmentation can be found in table 10.21. Some
canal localization results improve, but the average mean distance error is slightly
increased to 2.29mm.
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(a) (b)

(c) (d)

Figure 10.4 Bone segmentation and mandibular canal localization results, for data
set 1. Manual segmentation (a). ASM segmentation (b), and surface of ASM seg-
mentation optimized by snake (c). Comparison between expert localisation (yellow)
and ASM localisation (green) of the mandibular canal.
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(a) (b)

(c) (d)

Figure 10.5 Bone segmentation and mandibular canal localization results, for data
set 2. Manual segmentation (a). ASM segmentation (b), and surface of ASM seg-
mentation optimized by snake (c). Comparison between expert localisation (yellow)
and ASM localisation (green) of the mandibular canal.
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Table 10.22 The AAM training and segmentation parameters, used for the
mandibular canal AAM.

parameter value information
nb 0 Border added (pixels)
s [100 100 100] Texture size used (pixels)

nscales 1 Number of AAM image resolutions.
nsearch 20 Number of iterations

10.9 Improving the AAM results

10.9.1 Mandibular Canal AAM

The AAM model used before is trained on a combination of the bone surface and
mandibular canal points. This model gives a rough but robust estimate of the
mandibular canal position. PCA is global linear model the movement of a single bone
vertex will also impact the position of the points of the mandibular canal. These
correlations are not always physically justified.

Therefore it is a logical step to build also an AAM of only a single mandibular
canal, and use the result of the combined model as initialization. Also an advantage
is that we have twice as much mandibular canals as mandibles, resulting in twice as
much data sets by simply flipping the left or right mandibular canal.

We only have lines of connected points, to include the local neighborhood of a
canal to the appearance model, we need tubes. We use the method described in the
section ”Experiment Active Shape Model”, to generate such a triangulated tube. We
use a diameter of 16 pixels (6.4 mm). We construct this tube every time the AAM
requires appearance information, but train the shape model only on the line points.

Because we already have a rough initialization of the canal we don’t use lower
resolution images, but use a single scale model. We also do not optimize the result
with the simplex optimizer because it can move the canal model to positions which
also look like a canal but are far away form the real mandibular canal position. For
all parameters see table 10.22.

We have tested the model on five of the thirteen data sets. The distances between
automatic and expert annotation of the canal are shown in table 10.23.

10.9.2 Weighted Intensities

The AAM uses the difference between model intensities and image intensities as align-
ment error and to optimize the model parameters. The influence on the alignment
error of a pixel at the location of the mandibular canal is the same as everywhere
else in the bone. In our case we want to fit the model as accurate as possible to the
mandibular canal, and do not care about bone segmentation accuracy. Therefore the
idea is to increase the influence of the pixels corresponding to the mandibular canal,
and decrease the influence of the other pixels.
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Table 10.23 Distance between automatic and manual segmented mandibular canal.
Automatic results. With ’before’ the distance result of the combined AAM model,
and ’after’ the distance after optimizing with the AAM model of only the canal.

Right Left
Id b/a mean std max mean std max
1 before 1.68 0.98 4.26 3.87 2.05 8.47
1 after 1.51 0.92 3.36 4.26 2.31 8.22
2 before 1.38 0.70 3.91 1.57 0.59 4.14
2 after 3.90 1.38 8.29 0.89 0.59 2.22
3 before 3.20 0.91 5.94 2.76 1.06 6.10
3 after 4.78 0.91 7.60 3.27 1.11 6.38
4 before 1.79 0.64 4.22 1.48 0.65 4.08
4 after 1.95 0.86 5.38 1.65 0.90 3.30

The AAM is a linear model thus if there are large differences between model inten-
sities and image intensities at a certain model location they will have a large influence
on the model parameter update, Therefore we can simply increase the influence of
the pixels corresponding to the mandibular canal, by multiplying these intensities by
a large value.

In an AAM the image intensities are warped to a mean shape image Ims. We
sample the gray value vector g from the image coordinates L = (LTx , L

T
y ) in the mean

shape image. This vector g is used for the appearance part of the AAM model. To
increase the influence of the mandibular canal pixels we multiply the mean shape
image Ims with array Ams. In this array values far from the canal have a small value
and pixels close to the canal a high value. We construct Ams, by discretizing the
canal coordinates to an image with all background pixels set to zero and canal pixels
set to one. We smooth the image with a Gaussian kernel with sigma 5, then multiply
the array by 1/max(Ams) to scale the values between [0, 1] and add 0.1 to all pixels,
see figure 10.6.

We use the weighted intensities only for the highest scale of the AAM search. In
this scale the model is already close to the mandibular canal in the image. In the
lower resolution image scales we use the same AAM as in section 10.6. The distances
between expert annotation and AAM segmentation of the canal are show in table
10.24. The mean of the mean distance error is 1.88mm with the STD of the mean
distance error 0.69mm, the average standard deviation is 1.05mm.

10.10 Conclusion

We tested five methods to obtain an approximation of the mandibular canals. LK
tracking, B-spline registration, demon registration, ASM and AAM segmentation.
The average Dice coefficient of the bone segmentation of the 13 data sets where for
both registration methods and ASM and AAM segmentation around 0.76.

Both registration methods produced approximations of the mandibular canal
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Figure 10.6 Slice of matrix Ams, which is multiplied with the warped image inten-
sities Ims, to increase the influence of the pixels close to mandibular canal.

Table 10.24 Distance between AAM and manual segmented mandibular canal,
using location based intensity weights.

Right Left
Id mean std max mean std max
1 1.70 0.80 3.93 3.67 1.87 8.92
2 1.36 0.61 3.31 1.02 0.51 3.49
3 2.92 0.91 5.49 2.82 1.05 6.63
4 1.30 0.68 4.08 1.11 0.69 4.41
5 1.51 0.89 4.17 1.38 0.83 5.47
6 1.99 1.36 9.39 3 0.96 6.95
7 1.45 0.76 3.02 2.34 1.27 9.19
8 1.72 1.08 4.33 1.33 1.24 6.87
9 2.72 1.52 10.08 2.36 1.41 9.14
10 1.94 1.31 8.40 1.56 1.35 6.25
11 1.86 1.07 6.09 1.86 1.05 5.05
12 1.70 1.08 4.39 1.98 1.89 7.35
13 1.03 0.59 2.46 1.15 0.59 3.25
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which where far away from the medical expert annotation around 4mm and 5mm.
With LK tracking a mean distance to expert annotation of around 3mm. The AAM
and ASM method have the lowest average distance respectively 1.99mm and 2.27mm
to the medical expert annotation. But the resulting distance between ground truth
from the medical expert and AAM/ASM is higher than in recent literature average
distance to ground truth 1.1mm [33], and around 0.7mm [35]. One of the main causes
is the low number of training data sets with only cover a small amount of variation
between mandibles.

We increased Dice coefficient of the ASM bone segmentation to 0.80, by optimiz-
ing the surface description with a 3D snake. We test the same produce, the ASM
segmentation followed by snake optimization but now after filtering the data with
anisotropic diffusion. The filtering step did not increase the Dice coefficient of the
bone segmentation and has a negligible effect on the distance between expert label
and automatic detection. Finally we optimized ASM the mandibular canal approx-
imation by using fast-marching. In literature the canal always has a lower intensity
than the surroundings, but in our case the intensities are not lower. Therefore we use
a circular convolution filter, to lower the intensities in the mandibular canal. This is
done after warping the approximated mandibular canal to a straight line.

Our average mean distance error of the ASM is 2.29mm after shortest path tracing.
In comparison to literature we have a high distance error. This is probably due to
lower-dose scans, resulting in less contrast between mandibular canal and surrounding,
thus not a clear dark tunnel for our fast marching optimization.

In a study of Liang et al. [101] they compare the image quality of several CBCT
machines of several vendors. The image quality varies widely between the machines.
In some scans the mandibular canal is hardly visible due to noise or smoothing. In
scans of other brands it is a conspicuous black noise free canal. In this paper there
seems no direct relation between dose and image quality, the brand of the scanner is
more important.

Another reason for our large error is the small amount of training data sets (twelve)
in comparison to more than hundred in [33]. Post-optimization with the AAM of
only the mandibular canals (twenty four) was therefore also expected to increase the
accuracy. But the results afterwards were not better. Probably because the initial
canal model is still not close enough to the real mandibular canal.

The last method increasing the influence of pixels close to the mandibular canal
in the highest AAM image scale improves our results. We obtain an average mean
distance error of 1.88mm and average STD of 1.05mm. In this method the shape
and appearance from the mandible still have some influence on the mandibular canal
shape. Making it more robust than the mandibular canal AAM which does not have
this regularization.
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11
Conclusion

The aim of our research is to develop towards an automatic system for the extraction
of the mandibular canal from CBCT data. In the introduction chapter we have
formulated research questions, involved in reaching this goal. We will discuss the
answers to our research questions in the subsections below. Followed by a general
conclusion and discussion.

11.1 Research Questions

Research Question 1

Is it possible to get high enough accuracy and robustness to replace human annotation
of the mandibular canal in surgery planning?

To replace human annotation of the mandibular canal we need to be as accurate
and robust as a human observer. In Gerlach et al. [102], the reproducibility of 3
mandibular canal tracing methods in CBCT data are tested. The best performing
method, combining panoramic reconstructions with cross-sections had a mean inter
observer variability of 1.3mm with a STD of 0.384mm. With largest deviations in the
anterior loop region around 2.0mm due to ”the incomplete bony wall in combination
with the unpredictable recurrent course” [102]. Our implementation of a mandible
AAM segmentation model is fully automatic. The AAM with weighted intensities
extension has a mean distance to expert segmentation of the mandibular canal of
1.88mm and average STD of 1.05mm. Thus our mean and STD results have a 0.6mm
larger error than differences between expert segmentations.

This results in a safety margin around the AAM annotations of approximately
5mm (see figure 10.3). We measured the distance between the mandibular canal

119
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and the the top of the bone in the body of the 13 mandibles. The mean distance
is 13.3mm, the STD 6.1mm and minimum distance 3mm. The smallest implant of
Bicon Dental Implants [103] has a length of 6mm. This dental implant is small enough
to allow a safety margin of 5mm in 8 of our 13 patients.

Our ASM and AAM method heavily depends on the number of data sets for
learning shape variations. We have used 12 training data sets but in literature more
than 100 data sets are used [33] obtaining a mean distance error of around 1.1mm.
Thus to improve towards human accuracy, we have to use more training data.

Research Question 2

Is it possible to accurately extract the mandibular canal from CBCT only based on
intensities, or is shape information from a training set needed?

In chapter 4 we introduce template matching, to track the mandibular canal.
This method was initialized manually by selecting a point inside the mandibular
canal. The method has a mean distance from manual segmentation in the range
of the inter-observer distance at the center of the canal but the mean distance of
the whole mandibular canal is around 3.0mm. This is due to template drift, which
causes large segmentation errors of often 7mm or more at the ends of the mandibular
canal. Also the method does not stop tracking after exiting the canal. Our AAM is
fully automatic has a higher mean accuracy, and stops at the end of the mandibular
canal. Thus our method with a priori information performs better at the ends of the
mandibular canal.

In our literature overview, chapter 2 we have included some older papers which
do not use a priori information to segment the mandibular canal and have a larger
distance error than the ASM based method in [33]. But the recent publication (2011)
of Kim et al. [35], does not use training or atlas information, and outperforms all
other methods.

Summarizing, a priori information makes the mandibular canal segmentation more
robust, but does not necessarily give the most accurate segmentation results. Note,
the contrast between mandibular canal and surroundings in CBCT data depend on
radiation dose, X-ray spectrum and volume reconstruction method. This can be
the reason that that some literature without a priori shape-information outperforms
methods with shape information.

Research Question 3

Which of the three approaches is more suitable for extraction of the mandibular canal,
an active shape model, active appearance model or an atlas based registration method?

In our results (chapter 10), we compare the performance of the three methods.
If we look at bone segmentation there is no large difference between accuracy of the
segmentation of an ASM (mean Dice coefficient 0.75) and AAM, B-spline or demon
registration (0.76). But if we look at the AAM and ASM results on mandibular canal
localization (without post-processing) and the results of the B-spline and demon reg-
istration, we notice a large difference. For AAM and ASM segmentation the distance
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to the manual annotated canal is respectively 1.99mm and 2.27mm versus 4mm and
5mm for the B-spline and demon registration.

This difference is probably caused by the large variation in shapes and texture
between mandibles of patients, the high noise level, low contrast and small dimensions
of the mandibular canal. The ASM and AAM will try to produce results which are
possible regarding the variances in the training data. This makes them more robust to
noise and illumination differences compared with only using one scan and a smoothing
constraint as in the registration methods. The AAM method outperforms the ASM
model if we look at mandibular canal localization. This is expected because the AAM
model includes appearance information explicitly in the PCA model making the model
more robust. But also not expected because there is a high correlation between shape
and intensities in the model. Therefore more training data is needed for the AAM to
incorporate enough freedom in the shape model. Another problem are the teeth and
teeth-fillings, which cannot be described by a simple linear appearance model as used
in an AAM.

Research Question 4

What is a suitable method to get corresponding points between patient CBCT data sets
of the mandible?

When we look at the pertinent literature there are three major methods, used in
shape model building. The first method is to use point features such as local curvature
to find correspondences between surfaces. The second method describes the shape by
spherical harmonics, and finds surface correspondences through spherical harmonics.
The third method is minimum description length (MDL), in this method a PCA model
is constructed from a rough set of corresponding points. These corresponding points
are moved over the surface to minimize the variance in the PCA model. Because,
when points between datasets have a good correspondence, a compact PCA model
is obtained. The main disadvantage of MDL and spherical harmonics is that objects
have to be mapped to a sphere. The mandible is not resembling a sphere and area-
preserving mapping to a sphere is for this complex shape not possible. Thus some
small areas of the sphere will contain a large number of object vertices and some large
areas of the sphere a low number of object vertices, see chapter 9. Optimizing with a
MDL is therefore difficult, and will not result in a good uniform corresponding point
description of the original objects. MDL is about minimizing the description length
of the ASM, but the global minimum is when all object points collapse into a single
point. In practice points will locally cluster, degrading the quality of the description
of the original object.

Therefore we introduce a new point correspondence optimization method. This
method does not need the spherical mapping and uses surface features. Our method
is based on shape context surface registration, see chapter 8. The shape context
descriptor gives a description of a point based on not only local points (as in curvature
methods), but includes information of all points of the surface. We use this shape
context in combination with a diffeomorphic B-spline grid, to register iteratively and
smooth a set of points from one data set to another data set. The B-spline grid gives
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us a multi-resolution framework, and allows global to very local matching of the point
descriptions of the surfaces. Note, if we look at the results of ASM segmentation with
an ASM constructed with shape context, we see that test data set 2 has very good
segmentation results. This is probably because we use the surface vertices of this
data set as base points. We have registered this set to all other data sets to obtain
corresponding points. Thus the disadvantage is that our method is not optimal for
all data sets as in MDL, but favors the basis data set.

Research Question 5

Does adding edge enhancing filtering of the CBCT data as pre-processing step, increase
the accuracy in mandibular canal localization?

We have tested edge enhancing anisotropic diffusion filtering of the CBCT data
before applying the ASM, see chapter 10. The mandibular canal is better visible after
filtering and noise in the canal is decreased. But the Dice coefficients of the ASM do
not increase after filtering, and the distances between ASM and expert segmentations
of the mandibular canals do not decrease.

The anisotropic diffusion filtering connects missing edge segments thus can be used
to improve the result of fast marching. But in our data the mandibular canal has to
be pre-filtered by for example a circular filter, to make the intensities lower than the
surroundings. The circular pre-filter removes the need for anisotropic filtering.

Thus to conclude, edge-enhancing filtering of the data does not improve the accu-
racy of mandibular canal localization in our data.

11.2 Final Conclusion

We have evaluated LK tracking, demon and B-spline registration, ASM and AAM
segmentation. The mandibular canal localization performance of the methods are
tested, and accuracy of mandible segmentation for all methods expect LK tracking.

The methods have approximately the same accuracy if we look at mandible seg-
mentation. But if we look at nerve localization the AAM and ASM are far more
accurate. The AAM with weighted intensities extension has a mean Euclidian dis-
tance to a human observer of around 1.88mm. Our automatic mandibular canal
localization, is not as accurate as human annotation which has an inter observer dis-
tance of around 1.3mm. To improve the accuracy of our ASM and AAM results
we need more training sets to cover all variability between mandibles. The higher
accuracy of methods in literature is probably due to better image quality. Higher
image quality can be obtained with a higher dose or better reconstruction algorithms,
resulting in more contrast between canal and surroundings. In a study of Liang et
al. [101] the image quality of several CBCT machines of several brands is compared.
The image quality varies widely between the machines. In some scans the mandibular
canal is hardly visible due to noise or smoothing. In scans of other vendors it is a
high contrast noise free canal.
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11.3 Contributions

Our 3D ASM mandibular canal segmentation method is based on the method of
Kainmueller et al. [33]. The main improvement to the ASM model is including the
appearance of the mandibular canal into the model. In the original method the shape
of the canal is completely determined by the shape of the mandible surface. Our
method allows the mandibular canal to move more independent from the mandible
surface, resulting in a better localization of the canal.

Rueda et al. [30] introduced a 2D AAM based mandibular canal segmentation
method. In this thesis we introduce a 3D AAM with some extensions to improve
the accuracy. The main advantage of a 3D model is that it explicitly includes prior
knowledge about the curved shape of the canal, allowing segmentation of scans with
severe image noise and occlusions.

Chapter 3, Diffusion Filtering

We introduce a diffusion scheme which does rotation invariant edge preserving filtering
as in the method of Weickert [42], but without the checkerboard artifacts. Gaussian
based image derivatives are often assumed to give the most accurate image derivatives.
The results in this chapter show that numerical optimized image derivatives show
better rotation invariance than Gaussian based derivatives. This result is the main
contribution of this chapter. We also wrote a short paper about optimizing the image
derivatives for Sobel like filtering 1.

Chapter 4, Nerve Tracking

In this chapter we track the mandibular canal through an image volume, while locally
sampling slices orthogonal to the object creating a movie stream. The movie frames
are used for Lucas Kanade tracking, which returns the position of the mandibular
canal needed to sample the next movie frame. To our knowledge this method has not
been described in literature, and the tracking is useable for other elongated objects
such as blood vessels.

Chapter 5, Active Shape Model

This chapter describes some new extentions to the ASM and AAM model.
We introduce an illumination robust method to find optimal contour positions,

during ASM search based on PCA. The results show more accurate results than the
old Mahanoblish distance based method.

The original AAM uses as triangulation based warp, which is not a smooth warp.
We introduce a B-spline based warp method based on the method of Lee et al.[61].

Also a method is introduced which randomly permutes the initial position param-
eters of the ASM or AAM a few times. The position parameters with the lowest

1Kroon D.J, ”Numerical Optimization of Kernel Based Image Derivatives”, University of Twente,
Enschede. http://www.k-zone.nl/Kroon DerivativePaper.pdf
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model error after a few ASM or AAM itterations are used as initial parameters. This
is is straightforward, but was not expected to increase the AAM segmentation results
with ten percent for already accurate initial positions. This is probably because the
AAM is not robust against local search minima.

Chapter 6, Demon Registration

In this chapter we rewrite the demon registration equation to make it useable with line
search and a gradient based optimizer (partly already done by Thirion[66]), instead
of the implicitly steepest decent of the original method.

The main contribution of this chapter is the mutual histogram based method to
convert the appearance of a scan from one modality into another modality. This allows
the usage of fast intensity based registration methods such as demon registration, to
be used with scans from multiple modalities

Chapter 8, Shape context registration

Finding corresponding points with shape context is straightforward, but using it it-
eratively with a point based B-spline warp is novel. Our B-spline warp allows multi
scale corresponding point optimization for accurate correspondences. Our B-spline
warp followed by the iterative closes point (ICP) method keeps corresponding points
on the object surfaces. Commonly points are kept on the object surface by a spherical
or plane based mapping, during corresponding point optimization. This mapping is
not needed with our method, allowing non-convex and complex objects with holes to
be fitted with corresponding points.

Our ICP method contains also some improvement such as symmetric forces, and
point to surface correspondences using distance fields.

Chapter 9, Minimum description length

In this chapter we re-write the MDL optimization to be used with a quasi-Newton
optimizer instead of steepest decent minimization.

The original MDL method uses random matrices to deal with the poles and Merid-
ian in the spherical mapping. We use a separate coordinate system for every point,
allowing multi-scale regularization without pole and meridian problems.

Chapter 10, Results

In literature a composite AAM first segments the image with an AAM of the main
object, and then uses the result as initialization of an AAM of the sub object. We
introduce a more robust approach, by changing the weight of pixels corresponding to
the sub-structures instead of using a main and a sub model.
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Disseminations

All the image processing methods used for this thesis including, registration, visualiza-
tion and corresponding points methods are written from scratch and made available
as open source code. The source codes including comments and examples are available
on http://www.Mathworks.com.

For many of the methods there existed no open source implementations. For
other methods, such as 3D MDL there existed no Matlab or other easy to read open
source code. Especially our B-spline based registration tool is useful for image pro-
cessing. It contains many of the available extensions, including diffeomorphic and
volume preserving penalties, image based registration, point based registration, affine
registration and many image similarity measures. Many other codes are also made
available, which are not part of this thesis but used in other publications and research.



126 CHAPTER 11. CONCLUSION



References

[1] F. Quereshy, T. Savell, and J. Palomo, “Applications of Cone Beam Computed
Tomography in the Practice of Oral and Maxillofacial Surgery,” Journal of oral
and maxillofacial surgery , vol. 66, pp. 791–6, 2008.

[2] M. Wakoh and K. Kuroyanagi, “Digital Imaging Modalities for Dental Prac-
tice,” The Bulletin of Tokyo Dental College, vol. 42, pp. 1–14, 2001.

[3] P. Sukovic, “Cone Beam Computed Tomography in Craniofacial Imaging,” Or-
thod Craniofac Res, vol. 6 Suppl 1, pp. 31–6, 2003.

[4] K. Tsiklakis, C. Donta, S. Gavala, K. Karayianni, V. Kamenopoulou, and
C. Hourdakis, “Dose Reduction in Maxillofacial Imaging Using Low Dose Cone
Beam CT,” European Journal of Radiology, vol. 56, pp. 413 – 417, 2005.

[5] M. Sandulescu, M. Traistaru, M. Nitescu, and I. Sirbu, “A Morphological Study
of the Mandibular Canal in Partially Edentulous Patients,” Therapeutics, Phar-
macology and Clinical Toxicology, vol. 14, pp. 42–52, 2010.

[6] P. Robinson, “Observations on the Recovery of Sensation Following Inferior
Alveolar Nerve Injuries,” British Journal of Oral and Maxillofacial Surgery,
vol. 26, pp. 177 – 189, 1988.

[7] R. Robert, P. Bacchetti, and M. Pogrel, “Frequency of Trigeminal Nerve Injuries
Following Third Molar Removal,” Journal of oral and maxillofacial surgery,
vol. 63, pp. 732–5, 205.

[8] R. Orth, M. Wallace, and M. Kuo, “C-arm Cone-beam CT: General Principles
and Technical Considerations for Use in Interventional Radiology,” Journal of
Vascular and Interventional Radiology, vol. 19, no. 6, pp. 814 – 820, 2008.

[9] J. Avery, P. Steele, and N. Avery, Oral Development and Histology. Thieme
Medical Publishers Inc, 2001.

[10] A. O’Mahony, J. Williams, J. Katz, and P. Spencer, “Anisotropic Elastic Prop-
erties of Cancellous Bone from a Human Edentulous Mandible,” Clinical Oral
Implants Research, vol. 11, no. 5, pp. 415–421, 2000.

[11] M. Schuenke, E. Schulte, U. Schumacer, and L. Ross, Head and Neuroanatomy.
THIEME Atlas of Anatomy Series, Thieme Medical Publishers Inc, 3 2007.

127



128 REFERENCES

[12] T. Fletcher and A. Weber, Veterinary Developmental Anatomy, Veterinary Em-
bryology Class notes. No. CVM 6100, College of Veterinary Medicine, University
of Minnesota, 2009.

[13] C. Clemente, Gray’s Anatomy of the Human Body (30th Edition). Lea and
Febiger, 1985.

[14] D. Atwood, “Postextraction Changes in the Adult Mandible as Illus-
trated by Microradiographs of Midsagittal Sections and Serial Cephalometric
Roentgenograms,” The Journal of Prosthetic Dentistry, vol. 13, no. 5, pp. 810
– 824, 1963.

[15] M. Naitoh, K. Nakahara, Y. Suenaga, K. Gotoh, S. Kondo, and E. Ariji, “Com-
parison Between Cone-Beam and Multislice Computed Tomography Depicting
Mandibular Neurovascular Canal Structures,” Orthodontics and Craniofacial
Research, vol. 109, pp. 25–31, Jan 2010.

[16] G. Juodzbalys, H. Wang, and G. Sabalys, “Anatomy of Mandibular Vital Struc-
tures. Part I: Mandibular Canal and Inferior Alveolar Neurovascular Bundle in
relation with Dental Implantology.,” Journal of Oral and Maxillofacical Re-
search, vol. 1, no. 1, 2010.

[17] R. Langlais, R. Broadus, and B. Glass, “Bifid Mandibular Canals in Panoramic
Radiographs,” The Journal of the American Dental Association, vol. 110,
pp. 923–926, June 1985.

[18] M. Naitoh, Y. Hiraiwa, H. Aimiya, and E. Ariji, “Observation of Bifid Mandibu-
lar Canal Using Cone-Beam Computerized Tomographys,” Journal of Oral and
Maxillofacial Implants, vol. 24, pp. 115–9, 2009.

[19] E. Siebert, G. Bohner, M. Dewey, F. Masuhr, K. Hoffmann, J. Mews, F. En-
gelken, H. Bauknecht, S. Diekmann, and R. Klingebiel, “320-slice CT Neu-
roimaging: Initial Clinical Experience and Image Quality Evaluation ,” The
British journal of radiology, vol. 82, pp. 561–70, July 2009.

[20] M. Kachelrieb and W. Kalender, “Advanced Single-slice Rebinning in Cone-
beam Spiral CT ,” Medical Physics, vol. 27, pp. 754–772, 2000.

[21] M. Loubele, R. Bogaerts, E. Van Dijck, R. Pauwels, S. Vanheusden, P. Suetens,
G. Marchal, G. Sanderink, and R. Jacobs, “Comparison Between Effective Radi-
ation Dose of CBCT and MSCT Scanners for Dentomaxillofacial Applications,”
European Journal of Radiology, vol. 71, no. 3, pp. 461 – 468, 2009. Osteoporosis.

[22] L. Feldkamp, L. Davis, and J. Kress, “Practical Cone-Beam Algorithm,” Journal
of the Optical Society of America A: Optics, Image Science, and Vision, vol. 1,
pp. 612–619, 1984.

[23] W. Chlewicki, C. Badea, and P. N., “Cone Based 3D Reconstruction: A FDK-
SART Comparison for Limited Number of Projections,” in MEDICON, 2001.



REFERENCES 129

[24] S. Baker, R. Gross, and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying
Framework,” International Journal of Computer Vision, vol. 56, pp. 221–255,
2004.

[25] T. Cootes, C. Taylor, D. Cooper, and J. Graham, “Active Shape Models - Their
Training and Application,” Computer Vision, Graphics and Image Processing,
vol. 61(1), pp. 38–59, January 1995.

[26] T. Cootes, G. Edwards, and C. Taylor, “Active Appearance Models,” in Euro-
pean Conference on Computer Vision, vol. 2, pp. 484–498, H. Burkhardt & B.
Neumann, 1998.

[27] W. Stein, S. Hassfeld, and J. Muhling, “Tracing of Thin Tubular Structures
in Computer Tomographic Data,” Computer Aided Surgery, vol. 3, pp. 83–88,
1998.

[28] N. Hanssen, Z. Burgielski, T. Jansen, M. Lievin, L. Ritter, B. von Rymon-
Lipinski, and E. Keeve, “Nerves - Level Sets for Interactive 3D Segmentation
of Nerve Channels,” in Biomedical Imaging: Nano to Macro, 2004. IEEE In-
ternational Symposium on, vol. 1, pp. 201–204, April 2004.

[29] T. Kondo, S. Ong, and K. Foong, “Computer-based Extraction of the Infe-
rior Alveolar Nerve Canal in 3D Space.,” Computer Methods and Programs in
Biomedicine, vol. 76, no. 3, pp. 181–191, 2004.

[30] S. Rueda, J. Gil, R. Pichery, and A. Raya, “Automatic Segmentation of Jaw
Tissues in CT Using Active Appearance Models and Semi-automatic Land-
marking,” in Medical Image Computing and Computer-Assisted Intervention,
pp. 167–174, 2006.

[31] S. Sotthivirat and W. Narkbuakaew, “Automatic Detection of Inferior Alveolar
Nerve Canals on CT Images,” in Biomedical Circuits and Systems Conference,
2006. BioCAS 2006. IEEE, pp. 142 –145, 29 2006-dec. 1 2006.

[32] H. Yau, Y. Lin, L. Tsou, and C. Lee, “An Adaptive Region Growing Method to
Segment Inferior Alveolar Nerve Canal from 3D Medical Images,” Computer-
Aided Design and Applications, vol. 5, no. 5, pp. 743–752, 2008.

[33] D. Kainmueller, H. Lamecker, H. Seim, M. Zinser, and S. Zachow, “Automatic
Extraction of Mandibular Nerve and Bone from Cone-Beam CT Data,” in MIC-
CAI 2009, vol. 5762 of Lect. Notes Comput. Sci., pp. 76–83, Springer Berlin,
Heidelberg, 2009.

[34] H. Lamecker, S. Zachow, A. Wittmers, B. Weber, H. Hege, B. Elsholtz, and
M. Stiller, “Automatic Segmentation of Mandibles in Low-Dose CT-Data,” In-
ternational Journal Computer Assisted Radiology and Surgery , vol. 1, p. 393395,
2006.



130 REFERENCES

[35] G. Kim, J. Lee, H. Lee, J. Seo, Y. Koo, Y. Shin, and B. Kim, “Automatic Ex-
traction of Inferior Alveolar Nerve Canal Using Feature-Enhancing Panoramic
Volume Rendering,” Biomedical Engineering, IEEE Transactions on, vol. 58,
pp. 253 –264, feb. 2011.

[36] J. Roberts, N. Drage, J. Davies, and D. Thomas, “Effective Dose from Cone-
Beam CT Examinations in Dentistry,” The British Journal of Radiology, vol. 82,
pp. 35–40, 2009.

[37] J. Sunnegardh, Iterative Filtered Backprojection Methods for Helical Cone-Beam
CT . PhD thesis, Computer Vision , The Institute of Technology, 2009.

[38] S. Awate and R. Whitaker, “Unsupervised, Information-Theoretic, Adaptive
Image Filtering for Image Restoration,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 28, pp. 364–376, 2006.

[39] P. Perona and J. Malik, “Scale-space and Edge Detection using Anisotropic
Diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 12, pp. 629–639, 1990.

[40] J. Weickert, Anisotropic Diffusion in Image Processing. PhD thesis, University
of Copenhagen, Department of Computer Science, 1998.

[41] A. Mendrik, E. Vonken, A. Rutten, M. Viergever, and van Ginneken. B., “Noise
Reduction in Computed Tomography Scans using 3D Anisotropic Hybrid Diffu-
sion with Continuous Switch,” IEEE Transactions on Medical Imaging, vol. 28,
pp. 1585–1594, October 2009.

[42] J. Weickert and H. Scharr, “A Scheme for Coherence-Enhancing Diffusion Fil-
tering with Optimized Rotation Invariance,” Journal of Visual Communication
and Image Representation, vol. 13, no. 1, pp. 103–18, 2002.

[43] A. Frangakis and R. Hegerl, “Noise Reduction in Electron Tomographic Recon-
structions using Nonlinear Anisotropic Diffusion,” Journal of Structural Biology,
vol. 135, no. 135, pp. 239–250, 2001.

[44] M. Felsberg, “On the Relation between Anisotropic Diffusion and Iterated
Adaptive Filtering,” in Proceedings of the 30th DAGM symposium on Pattern
Recognition, (Berlin, Heidelberg), pp. 436–445, Springer-Verlag, 2008.

[45] J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence Properties of
the Nelder-Mead Simplex Method in Low Dimensions,” SIAM Journal on Op-
timization, vol. 9, no. 1, pp. 112–147, 1998.

[46] D. Shanno, “Conditioning of Quasi-Newton Methods for Function Minimiza-
tion,” Mathematics of Computation, vol. 24, no. 111, pp. 647–656, 1970.



REFERENCES 131

[47] M. Ahmed, S. Yamany, A. Farag, and T. Moriarty, “Bias Field Estimation
and Adaptive Segmentation of MRI Data Using a Modified Fuzzy C-Means
Algorithm,” in In Proceedings IEEE International Conference Computer Vision
and Pattern Recognition, pp. 250–255, 1999.

[48] L. Dario, “Implant Placement above a Bifurcated Mandibular Canal: a Case
Report.,” Implant Dentistry, vol. 11, no. 3, pp. 258–256, 2002.

[49] G. Hager and P. Belhumeur, “Efficient Region Tracking With Parametric Mod-
els of Geometry and Illumination,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 10, pp. 1025–1039, 1998.

[50] D. Schreiber, “Robust Template Tracking with Drift Correction,” Pattern
Recognition Letters, vol. 28, no. 12, pp. 1483–1491, 2007.

[51] I. Matthews, T. Ishikawa, and S. Baker, “The Template Update Problem,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
pp. 810–815, June 2004.

[52] H. Akhoondali, R. Zoroofi, and G. Shirani, “Fully Automatic Extraction of
Panoramic Dental Images from CT-Scan Volumetric Data of the Head,” Journal
of Applied Sciences, vol. 9, no. 11, pp. 2106–2114, 2009.

[53] C. Iacobellis, A. Bulzacchi, and A. Rioda, “CT Evaluation of Regenerated Os-
seous Segments Following Bone Transport,” Journal of Orthopaedics and Trau-
matology, vol. 5, pp. 178–184, 2004. 10.1007/s10195-004-0067-0.

[54] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,”
International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988.

[55] C. Lürig, L. Kobbelt, and T. Ertl, “Hierachical Solutions for the Deformable
Surface Problem in Visualization,” Graphical Models, vol. 62, no. 1, pp. 2–18,
2000.

[56] D. L. Pham, C. Xu, and J. L. Prince, “A Survey of Current Methods in Medi-
cal Image Segmentation,” in Annual Review of Biomedical Engineering, vol. 2,
pp. 315–338, Annual Review of Biomedical Engineering, 1998.

[57] V. Wyawahare, P. M. Patil, and H. K. Abhyankar, “Image Registration Tech-
niques: An Overview,” International Journal of Signal Processing,Image Pro-
cessing, vol. 2, pp. 11–28, Sept. 2009.

[58] K. Pearson, “On lines and Planes of Closest Fit to Systems of Points in Space,”
Philosophical Magazine, vol. 2, no. 6, pp. 559–572, 1901.

[59] B. Horn, “Closed-form Solution of Absolute Orientation Using Unit Quater-
nions,” Journal of the Optical Society of America A, vol. 4, no. 4, pp. 629–642,
1987.



132 REFERENCES

[60] D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, and D. Hawkes, “Non-
Rigid Registration using Free-Form Seformations: Application to Breast MR
Images,” IEEE Transactions Medical Imaging, vol. 18, no. 8, pp. 712–721, 1999.

[61] S. Lee, G. Wolberg, and S. Y. Shin, “Scattered Data Interpolation with Mul-
tilevel B-Splines,” IEEE Transactions Visualization and Computer Graphics,
vol. 3, pp. 228–244, 1997.

[62] M. Stegmann, R. Fisker, and B. Ersbøll, “Extending and Applying Active Ap-
pearance Models for Automated, High Precision Segmentation in Different Im-
age Modalities,” in Proceedings 12th Scandinavian Conference on Image Anal-
ysis - SCIA 2001, Bergen, Norway (I. Austvoll, ed.), (Stavanger, Norway),
pp. 90–97, NOBIM, jun 2001.

[63] T. Coleman and Y. Li, “An Interior Trust Region Approach for Nonlinear Min-
imization Subject to Bounds,” tech. rep., Cornell University, Ithaca, NY, USA,
1993.

[64] T. Coleman and Y. Li, “On the convergence of reflective newton methods for
large-scale nonlinear minimization subject to bounds,” 1992.

[65] D. J. Kroon, E. S. B. van Oort, and C. H. Slump, “Multiple Sclerosis Detec-
tion in Multispectral Magnetic Resonance Images with Principal Components
Analysis,” in 3D Segmentation in the Clinic: A Grand Challenge II: MS lesion
segmentation, New-York, USA, (Website), pp. 604–617, Kitware, September
2008.

[66] J. Thirion, “Image Matching as a Diffusion Process: an Analogy with Maxwell’s
Demons,” Medical Image Analysis, vol. 2, pp. 243–260, September 1998.

[67] F. Castro, C. Pollo, O. Cuisenaire, J. Villemure, and J. Thiran, “Validation of
Experts Versus Atlas-Based and Automatic Registration Methods for Subtha-
lamic Nucleus Targeting on MRI,” International Journal of Computer Assisted
Radiology and Surgery, vol. 1, no. 1, pp. 5–12, 2006.

[68] M. Bro-Nielsen and C. Gramkow, “Fast Fluid Registration of Medical Images,”
in Proceedings Visualization in Biomedical Computing, pp. 267–276, Springer-
Verlag, 1996.

[69] H. Wang, L. Dong, J. O’Daniel, R. Mohan, A. Garden, K. Ang, D. Kuban,
J. Bonnen, M. Chang, and R. Cheung, “Validation of an Accelerated ’Demons’
Algorithm for Deformable Image Registration in Radiation Therapy,” Physics
in Medicine and Biology, vol. 50, no. 12, p. 28872905, 2005.

[70] P. Cachier, X. Pennec, and N. Ayache, “Fast Non-Rigid Matching by Gradient
Descent: Study and Improvement of the Demons Algorithm,” 1999.



REFERENCES 133

[71] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Non-parametric Dif-
feomorphic Image Registration with the Demons Algorithm,” Medical Image
Computing and Computer-Assisted Intervention MICCAI 2007, vol. 2, pp. 319–
326, 2007.

[72] C. Cocosco, V. Kollokian, R.-S. Kwan, G. Pike, and A. Evans, “Brainweb:
Online Interface to a 3D MRI Simulated Brain Database,” NeuroImage, vol. 5,
p. 425, 1997.

[73] R. Kwan, A. Evans, and G. Pike, “MRI Simulation-Based Evaluation of Image-
Processing and Classification Methods,” IEEE Transactions on Medical Imag-
ing, vol. 18, no. 11, pp. 1085–1097, 1999.

[74] F. Chen and K. Arunachalam, “Geometric Transformation Pinched Hallway
and its Restoration,” 2001.

[75] E. Haber and J. Modersitzki, Bildverarbeitung für die Medizin 2005, vol. 5,
pp. 350–354. Springer-Verlag, 2005.

[76] B. Zitova and J. Flusser, “Image Registration Methods: a Survey,” Image and
Vision Computing, vol. 21, no. 11, pp. 977 – 1000, 2003.

[77] W. Crum, T. Hartkens, and D. Hill, “Non-Rigid Image Registration: Theory
and Practice,” Br J Radiol, vol. 77, pp. S140–153, Dec. 2004.

[78] J. Schnabel, C. Tanner, A. Castellano-Smith, A. Degenhard, M. Leach, D. Hose,
D. Hill, and D. Hawkes, “Validation of Nonrigid Image Registration Using
Finite-Element Methods: Application to Breast MR Images,” Medical Imag-
ing, IEEE Transactions on, vol. 22, pp. 238 –247, feb. 2003.

[79] J. Pluim, J. Maintz, and M. Viergever, “Mutual-Information-Based Registration
of Medical Images: a Survey,” Medical Imaging, IEEE Transactions on, vol. 22,
pp. 986 –1004, aug. 2003.

[80] G. Penney, J. Weese, J. Little, P. Desmedt, D. Hill, and D. hawkes, “A Com-
parison of Similarity Measures for use in 2-D-3-D Medical Image Registration,”
Medical Imaging, IEEE Transactions on, vol. 17, pp. 586 –595, aug. 1998.

[81] J. Nocedal, “Updating Quasi-Newton Matrices with Limited Storage,” Mathe-
matics of Computation, vol. 35, no. 151, pp. 773–782, 1980.

[82] D. Rueckert, P. Aljabar, R. A. Heckemann, J. V. Hajnal, and A. Hammers,
“Diffeomorphic Registration Using B-Splines,” in Proc Intern Conf on Medical
Image Computing and Computer-Assisted Intervention (MICCAI) (R. Larsen,
M. Nielsen, and J. Sporring, eds.), vol. 4191 of LNCS, pp. 702–709, Springer,
2006.

[83] Y. Choi and S. Lee, “Injectivity Conditions of 2D and 3D Uniform Cubic B-
spline Functions,” Graphical Models, vol. 62, pp. 411–427, December 2000.



134 REFERENCES

[84] I. Barandiaran, I. Macia, E. Berckmann, D. Wald, M. Dupillier, C. Paloc, and
M. Grana, “An automatic segmentation and reconstruction of mandibular struc-
tures from CT-data,” in Proceedings of the 10th IDEAL, IDEAL’09, (Berlin,
Heidelberg), pp. 649–655, Springer-Verlag, 2009.

[85] M. Styner, K. Rajamani, L. Nolte, G. Zsemlye, G. Szekely, C. Taylor, and
R. Davies, “Evaluation of 3D Correspondence Methods for Model Building,” in
IPMI, pp. 63–75, 2003.

[86] R. Davies, C. Twining, T. Cootes, J. Waterton, and C. Taylor, “3D Statistical
Shape Models Using Direct Optimisation of Description Length,” in ECCV
2002 (A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, eds.), vol. 2352 of
Lect. Notes Comput. Sci., pp. 1–17, Springer Berlin, Heidelberg, 2002.

[87] H. Thodberg, “Minimum Description Length Shape and Appearance Models,”
in IPMI, pp. 51–62, Springer, 2003.

[88] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object Recog-
nition Using Shape Contexts,” IEEE Transactions Pattern Analysis Machine
Intelligence, vol. 24, pp. 509–522, April 2002.

[89] J. Munkres, “Algorithms for the Assignment and Transportation Problems,”
Journal of the Society for Industrial and Applied Mathematics, vol. 5, pp. 32–
38, March 1957.

[90] T. Rohlfing, C. Maurer, D. Bluemke, and M. Jacobs, “Volume-Preserving Non-
rigid Registration of MR Breast Images Using Free-Form Deformation with
an Incompressibility Constraint,” IEEE Transactions Medical Imaging, vol. 22,
pp. 730–741, 2003.

[91] M. Kortgen, M. Novotni, and R. Klein, “3D Shape Matching with 3D Shape
Contexts,” in 7th Central European Seminar on Comp. Graph., 2003.

[92] J. Friedman, J. Bentley, and R. Finkel, “An Algorithm for Finding Best Matches
in Logarithmic Expected Time,” ACM Transactions Mathematical Software,
vol. 3, pp. 209–226, Sept. 1977.

[93] C. Maurer, R. Qi, and V. Raghavan, “A Linear Time Algorithm for Comput-
ing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Di-
mensions,” IEEE Transactions Pattern Analyis Machine Intelligence, vol. 25,
pp. 265–270, February 2003.

[94] A. Brett and C. Taylor, “A Method of Automated Landmark Generation for
Automated 3D PDM Construction,” Image and Vision Computing, vol. 18,
pp. 739–748, 1998.

[95] Y. Wang, B. Peterson, and L. Staib, “Shape-Based 3D Surface Correspondence
Using Geodesics and Local Geometry,” in IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 644–651, 2000.



REFERENCES 135

[96] T. Heimann, I. Wolf, T. Williams, and H. Meinzer, “3D Active Shape Models
Using Gradient Descent Optimization of Description Length,” in in Proceedings
IPMI, pp. 566–577, Springer, 2005.

[97] C. Brechbuhler, G. Gerig, and O. Kubler, “Abstract Parametrization of Closed
Surfaces for 3-D Shape Description,” 1996.

[98] E. Dijkstra, “A note on Two Problems in Connexion With Graphs,” Numerische
Mathematik, vol. 1, pp. 269–271, 1959.

[99] C. Xu and J. Prince, “Gradient Vector Flow: A New External Force for Snakes,”
in IEEE Proceedings Conf. On, pp. 66–71, 1997.

[100] M. Hassouna and A. Farag, “Multistencils Fast Marching Methods: A Highly
Accurate Solution to the Eikonal Equation on Cartesian Domains,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1–
12, 2007.

[101] X. Liang, R. Jacobs, B. Hassan, L. Li, R. Pauwels, L. Corpas, P. Souza,
W. Martens, M. Shahbazian, A. Alonso, and I. Lambrichts, “A Comparative
Evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT
(MSCT): Part I. On Subjective Image Quality,” European Journal of Radiology,
vol. 75, no. 2, pp. 265 – 269, 2010.

[102] N. Gerlach, G. Meijer, T. Maal, J. Mulder, F. Rangel, W. Borstlap, and
S. Berge, “Reproducibility of 3 Different Tracing Methods Based on Cone
Beam Computed Tomography in Determining the Anatomical Position of the
Mandibular Canal.,” Journal of Oral and Maxillofacial Surgery, vol. 68, no. 4,
pp. 811–7, 2010.

[103] Bicon Dental Implants. http://www.bicon.com/product_info/pi_implants.
html, 501 Arborway, MA 02130, Boston, 2011.

http://www.bicon.com/product_info/pi_implants.html
http://www.bicon.com/product_info/pi_implants.html


136 REFERENCES



Disseminations

1. A. Klein, D. J. Kroon, Y. Hoogeveen, L. J. Schultze Kool, W. K. J. Renema, and
C. H. Slump, “Multimodal Image Registration by Edge Attraction and Regular-
ization Using a B-spline Grid,” in Medical Imaging 2011: Image Processing, Lake
Buena Vista, Florida, USA (D. M. Dawant and D. R. Haynor, eds.), vol. 7962 of
Proceedings of SPIE, (Bellingham, USA), p. 796220, SPIE, February 2011.

2. Y. Mazaheri, L. Bokacheva, D. J. Kroon, O. Akin, H. Hricak, D. Chamudot,
S. Fine, and J. A. Koutcher, “Semi-automatic Deformable Registration of Prostate
MR Images to Pathological Slices,” Journal of Magnetic Resonance Imaging,
vol. 32, pp. 1149–1157, September 2010.

3. D. J. Kroon, C. H. Slump, and T. J. J. Maal, “Optimized Anisotropic Rotational
Invariant Diffusion Scheme on Cone-Beam CT ,” in 13th International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention (MICCAI
2010), Beijing, China, vol. 6363 of Lecture Notes in Computer Science, (Berlin),
pp. 221–228, Springer Verlag, September 2010.

4. D. J. Kroon and C. H. Slump, “Coherence Filtering to Enhance the Mandibular
Canal in Cone-Beam CT Data,” in Proceedings of the 4th Annual Symposium of
the IEEE-EMBS Benelux Chapter, Enschede, (Enschede), pp. 41–44, IEEE EMBS
Benelux Chapter, 2009.

5. D. J. Kroon and C. H. Slump, “MRI Modality Transformation in Demon Regis-
tration,” in IEEE International Symposium on Biomedical Imaging: From Nano
to Macro, ISBI ’09, Boston, MA, (USA), pp. 963–966, IEEE Signal Processing
Society, 2009.

6. D. J. Kroon, E. S. B. van Oort, and C. H. Slump, “Multiple Sclerosis Detection in
Multispectral Magnetic Resonance Images with Principal Components Analysis,”
in 3D Segmentation in the Clinic: A Grand Challenge II: MS lesion segmentation,
New-York, USA, (Website), pp. 604–617, Kitware, September 2008.

7. D. J. Kroon, C. H. Slump, M. Sluzewski, and W. J. J. van Rooij, “Image Based
Hemodynamic Modelling of Cerebral Aneurysms and the Determination of the Risk
of Rupture,” in Medical Imaging 2006: Physiology, Function, and Structure from
Medical Images, San Diego, USA, vol. 6143 of Proceedings of SPIE, pp. 718–727,
The International Society for Optical Engineering (SPIE), February 2006.

137



138 DISSEMINATIONS

Software Publications

All software is written in Mathworks Matlab and C++.
URL: www.mathworks.com/matlabcentral/fileexchange/authors/29180

Rendering

Viewer3d, medical volume data rendering. Shaded, maximum intensity and slice
rendering. Including annotation and segmentation tools.

Showvol Isosurface Render, interactive ISO-surface rendering.

OpenGl .Net Examples, Microsoft .Net based openGL rendering in Matlab.

Patch Software Render, software renderer, supporting textured polygons, and shadow
volume calculation.

File Format

Dicom Toolbox, Tags Read and Write, read and write Dicom volumes, and read write
private tags.

Read Medical Data 3D, read medical file formats, for example Philips V3D, HDR
analyze and VMP brainvoyager.

Wave front Obj Toolbox, read and write wavefront object files, with geometric data,
such as polygons.

Image Filtering

Fast Non-Local Means 1D, 2D color and 3D, edge preserving Non-Local means fil-
tering.

Image Edge Enhancing Coherence Filter Toolbox, edge enhancing, non-anisotropic
diffusion filtering, optimized for rotational invariance.

Hessian Based Frangi Vesselness filter, vessel enhancing filter based on local eigen-
value analysis.

Bias Field Corrected Fuzzy C-Means, bias field correction for MRI and clustering of
image intensities.

Registration and Matching

Shape Contex Based Corresponding Point Models, Construct point corresponding
model through shape-context point matching constrained with a B-spline regis-
tration grid.

Bspline Grid, Image and Point based Registration, Rueckert free form deformation
(FFD) image registration, and Lee et al. point registration. Including Jacobian
constraints, affine registration, and mutual information.
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Multimodality non-rigid demon algorithm image registration, basic and optimizer
based demon image registration. Including code to register multi-modal images.

Fast/Robust Template Matching, Fast SSD and normalized cross correlation, for 2D
and 3D template matching .

Lucas Kanade affine template tracking, Lucas Kanade template tracking.

Object Detection and segmentation

Active Shape Model (ASM) and Active Appearance Model (AAM), 2D and 3D
active shape and active appearance model, training and segmentation.

Viola Jones Object Detection, Viola jones, object and face detection.

OpenSurf, Scale invariant feature point detection and matching.

Snake Active Contour, 2D and 3D object contour segmentation with active contour.

Mesh Tools

Mesh2Tetra, Fit tetrahedrons inside a triangulated mesh

Smooth Triangulated Mesh, curvature based smoothing of a triangulated mesh.

Triangle Area and Angles, accurate angles and area calculation for triangulated data.

Triangular Mesh Refinement, smooth 4-split refinement of triangulated mesh.

Finite Iterative Closes Point, register point clouds affine.

Polygon2Voxel, Converts a triangulated mesh into a binary volume.

Optimization and classification

Classic Adaboost classifier, Two class Adaboost classifier.

Basic PCA based log-Likelihood classifier, Maximum log-likelihood classifier.

Fminlbfgs : Fast Limited Memory Optimizer, quasi Newton optimizer.

Uncategorized

Accurate Fast Marching, Shortest path detection and skeletonize of objects.

DTI and Fiber Tracking, Diffusion tensor imaging of nerve-fibers in the brain.

Isocontour, Marching squares, 2D implementation of fast marching algorithm.

Hist Connect, Improved histograms for sparse spatial correlated 1D and 2D data.

Separate Kernel in 1D kernels, Separate ND kernels for faster image filtering.

Region growing, Region growing 2D image segmentation.
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Web Server, Matlab html webserver, supporting uploads and m-file execution.

Kinect Matlab, Kinect wrapper code, depth camera and supporting skeleton tracking



Summary

Accurate information about the location of the mandibular canal is essential in case
of dental implant surgery [48], because entering the canal space during implant place-
ment can damage the inferior alveolar nerve or blood vessels. Cone beam CT (CBCT)
is becoming an increasingly utilized imaging modality in dental examinations, with a
factor of ten lower dose than multi-slice CT [36]. The goal of our research is to find
an automatic method which can segment the mandibular canal in CBCT. This allows
an accurate safety margin around the canal in surgery planning.

In the last thirteen years, eight methods for automatic mandibular canal segmen-
tation were published. The first methods focus on segmentation of the canal from
CT [27] [28] [29] [30] [31] [32] and the later methods are developed for lower dose
CBCT data [33] [34] [35]. The first approaches do not include shape constraints from
training, and need user based initialization. In 2006, Rueda et al. [30] have pro-
duced a model with a priori shape information based on 2D active appearance models
(AAM), followed by Kainmueller et al. [33] in 2009 with an 3D active shape model
(ASM) model. The mean distance to manual annotation of the mandibular canal of
the method of Kainmueller is around 1.1mm. Almost all methods from literature,
assume a black canal surrounded by higher intensities, and use fast marching [100] or
Dijkstra’s algorithm [98] to find a more accurate position of the mandibular canal. In
2011 Kim et al. [35] have published a paper which does not use shape-constraints, but
out performs existing methods with a mean distance to ground truth nerve location
of around 0.7mm

In this thesis we develop and evaluate five methods for mandibular canal local-
ization. The methods, Lukas Kanade tracking (LK) [49], B-spline registration [60],
demon registration [66], 3D active shape model (ASM) [25] and active appearance
model (AAM) [26].

The first method does not use training information and is based on LK template
tracking of the canal. The methods starts tracking from a user selected point inside
the mandibular canal. The two registration methods are demon-registration and B-
spline registration which are used for mandibular bone and canal segmentation. In
a pre-process we automatically select from a list of manually segmented images the
one which closest matches the test image. Then we register the images to obtain the
mandibular canal position.

The fourth method, is a 3D ASM model which extends on work of Kainmueller et
al. [33]. An ASM models learns variations between corresponding points in training
data sets, which are used as shape constraints during segmentation. We can extend
the model by learning the combination of variations in shape and appearance data,
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which is our last method, the AAM.
We test several methods to find the corresponding points. The first is the mini-

mum description length (MDL) [86] [96] method which finds point correspondences
by optimizing the point positions to minimize the model variance and obtain the most
compact ASM. MDL is mainly suitable for sphere like objects therefore we introduce
a new method. Our method finds correspondences based on surface registration in
which we use shape context (SC) [88] as match criterion.

We have obtained 13 cone-beam CT (CBCT) scans from the department of
oral and maxillofacial surgery, Radboud university Nijmegen medical centre. The
mandibular canals are annotated in these scans by a medical expert, and the mandibu-
lar bone is also segmented.

In the results we measure the bone segmentation performance of our methods.
This is done by calculating the overlap between automatically segmented mandibular
bone and manually segmentations. The B-spline registration, demon registration
ASM and AAM method have approximately the same score for bone segmentation
with a Dice coefficient of around 0.75.

We also measure the performance of mandibular canal localization. This is done
by calculating the distance between manual annotation of the mandibular canal and
automatic localization. The registration methods have the worst performance, with a
mean distance of more than 4mm. The LK tracking method has a mean distance error
of 3.0mm, which is mainly due to template drift at the ends of the mandibular canal.
The AAM and ASM are robust and have a mean distance to manually annotation of
respectively 2.0mm and 2.3mm.

The mean distance error of the ASM is high compared to the latest literature.
Therefore we investigate a few post processing methods to increase the accuracy.

The first is filtering the CBCT data with an edge preserving optimized anisotropic
diffusion filter, to remove noise and enhance the bony edges of the mandibular canal.
The second, is 3D snake [55] [56] optimization of the ASM surface describing the
bone. In our case we have a low number of training images, thus our ASM does not
incorporate all the possible variations between the mandibles. A snake is a deformable
model, constrained by internal energy such as bending energy. With the snake we
optimize the surface description from ASM, and obtain a mean Dice coefficient of
0.8. As final optimization we use fast marching to find the dark tunnel through the
bone. This tunnel often corresponds to the mandibular canal. Because of the low
contrast between canal and surroundings, we first filter the data with a circular filter
to lower the intensities in the canal. We limit the fast-marching to the inside of the
bone, by setting all pixels outside the bone to a high intensity using the bone-shape
obtain before. The average mean distance between expert and ASM segmentation of
mandibular canal does not decrease and remains 2.3mm.

The AAM is extended using the mandible AAM as initialization of an AAM of
only the mandibular canal. By flipping the left and right canals we obtain twice as
much data sets. If we look at results some good localization results improve, but
the other canal localization results decrease. Finally we use a method in which we
increase the influence of pixels close to the mandibular canal, on the AAM of the
mandible. This increases our canal localization accuracy to an average mean distance
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to expert segmentation of 1.88mm and mean STD of 1.05mm.
In conclusion, our ASM and AAM method outperform the mandibular canal lo-

calization of LK tracking, B-spline and demon registration methods. The accuracy
of the ASM method on bone segmentation can be increased by adding a snake post-
processing step. Fast marching only increases the accuracy of already good ASM
mandibular localizations, and decreases the accuracy from bad ASM segmentations.
Our AAM with weighted intensities has a mean distance error of 1.88mm which is
higher than the 1.3mm inter observer distance [102] of human segmentation. This is
also higher than the best results in literature, 0.7mm. The main reasons are probably
the low number of training data sets and low contrast between canal and surround-
ings due to a low dose. The accuracy of the introduced ASM and AAM method can
probably be increased to 1.1mm [33], if we use more training data sets.
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Samenvatting

Nauwkeurige informatie over de locatie van het mandibular kanaal is essentieel in
mond en kaak chirurgie [48]. Want als het kanaal word beschadigd tijdens het plaatsen
van een implantaat, kan de inferior alveolar zenuw of bloedvaten beschadigd raken.
Cone beam CT (CBCT) word steeds vaker gebruikt om een beeld te krijgen van de
kaak voor een dergelijke tandartsingreep. CBCT heeft een factor 10 lagere dosis dan
normale CT [36]. Het doel van ons onderzoek, is het ontwerpen van een automatische
methode, voor het segmenteren van het mandibular kanaal in CBCT. Dit zal een
nauwkeurige veiligheidsmarge geven, die gebruikt kan worden bij het plannen van de
ingreep.

In de afgelopen dertien jaren zijn acht methoden gepubliceerd voor het automa-
tisch segmenteren van het mandibular kanaal. De eerste methoden focussen op het
segmenteren van het kanaal uit CT scans [27] [28] [29] [30] [31] [32], maar latere meth-
oden zijn ontworpen voor lage dosis CBCT data [33] [34] [35]. De eerste methoden
gebruiken geen aangeleerde mandibula vormen om de segmentatie te ondersteunen.
Vaak moet ook het begin van het kanaal door de gebruiker worden aangegeven. In
2006, introduceerde Rueda et al. [30] een model die van te voren aangeleerde ge-
ometrische informatie gebruikt tijdens de segmentatie. Deze informatie werd aan-
geleerd met behulp van een 2D active appearance model (AAM). Deze publicatie
werd gevolgd door een publicatie van Kainmueller et al. [33] die in 2009 een 3D ac-
tive shape model (ASM) voor segmentatie van de mandibula en kanalen gebruikte. De
gemiddelde afstand van automatische tot handmatig annotatie van het the mandibu-
lar kanaal is in de methode van Kainmueller ongeveer 1.1mm. Bijna alle literatuur
gaat er van uit dat het kanaal een lage intensiteit heeft en omgeven is door pixels
met een hogere intensiteit. Daardoor is het mogelijk fast marching [100] of Dijkstra’s
algoritme [98] te gebruiken om een nauwkeuriger positie van mandibular kanaal te
vinden. In 2011 publiceerde Kim et al. [35] een paper met een methode waarin geen
aangeleerde kaakvormen worden gebruikt. Deze methode gaf betere resultaten dan
alle andere methoden, met een gemiddelde afstand tot expert annotatie van ongeveer
0.7mm

In dit proefschrift beschrijven wij het ontwerp en de evaluatie van vijf meth-
oden voor het lokaliseren van het mandibular kanaal. Namelijk Lukas Kanade
tracking (LK) [49], B-spline registratie [60], demon registratie [66], 3D active shape
model(ASM) [25] en een active appearance model (AAM) [26].

De eerste methode gebruikt geen van te voren aan geleerde informatie en is
gebaseerd op LK template tracking van het kanaal. De methode begint het kanaal te
volgen vanaf een door de gebruiker geselecteerd punt in het mandibular kanaal. De
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twee registratie methoden zijn demon-registratie en B-spline registratie, deze worden
gebruikt om mandibula en het mandibular kanaal te segmenteren. Van te voren se-
lecteren we uit een lijst van handmatig gesegmenteerde kaken, diegene die het best
past bij de test scan. Daarna registeren we deze gesegmenteerde scan op de test scan
om zo de locatie van het mandibular kanaal te verkrijgen.

Onze vierde methode is de 3D ASM methode die door Kainmueller et al. [33]
is gëıntroduceerd en door ons uitgebreid. Een ASM model leert de geometrische
variaties tussen correspondeerde punten in training data. De aangeleerde variatie en
correlatie wordt tijden de segmentatie gebruikt om de segmentatievorm te begrenzen.
Deze limitatie houd in dat alleen object vormen mogelijk zijn die overeen komen met
de variatie in de trainingdata. We kunnen dit model uitbreiden, door het model ook
textuur en grijswaarde informatie aan te leren. Dit doen we met onze laatste methode,
de AAM.

Voor het leren van de vorm variaties van de mandibular zijn corresponderende pun-
ten tussen de oppervlaktes van onderkaaken nodig. We hebben verschillende meth-
oden getest om deze punten te vinden. De eerste methode is minimum description
length (MDL) [86] [96]. Deze methode vindt corresponderende punten door de pun-
ten zo te verplaatsen dat de variatie tussen de punten zo klein mogelijk wordt, en de
beschrijving door de ASM zo compact mogelijk. MDL is voornamelijk bruikbaar voor
bolvormige objecten, daarom introduceren we een nieuwe methode. Onze methode
vindt corresponderende punten door middel van oppervlakte registratie, waarbij we
gebruik maken van shape context (SC) [88] om de overeenkomende plekken op de
oppervlakten te vinden.

We hebben 13 cone-beam CT (CBCT) datasets ontvangen van de mond, kaak- en
aangezichtschirurgie afdeling van het Radboud university nijmegen medical centre. De
mandibular kanalen zijn geannoteerd door een medische specialist. Ook de mandibula
is daarna gesegmenteerd.

In de resultaten in hoofdstuk 10, meten we de prestatie van de methoden op het
gebied van segmentatie van de mandibula. Dit wordt gedaan door de overlap tussen
automatisch en handmatig gesegmenteerde mandibula botten te vergelijken. De B-
spline registratie, demon registratie, ASM en AAM methode hebben ongeveer dezelfde
bot segmentatie Dice coëfficiënt van ongeveer 0.75.

We meten ook de prestatie van de algoritmes als het gaat om het lokaliseren van
het mandibular kanaal. Dit wordt gedaan door de afstand te meten tussen de hand-
matige annotatie en automatische annotatie van het kanaal. De registratie methoden
presenteren het slechtst, met een gemiddelde afstand van meer dan 4mm tussen de
verschillende annotaties. De LK tracking methode heeft een gemiddelde afstandsfout
van 3.0mm. Deze fout komt voornamelijk door dat de method van het kanaal wegdri-
jft tijdens het volgen, waardoor de nauwkeurigheid aan het eind van het mandibular
kanaal laag is. De AAM en ASM methode zijn robuust maar hebben een gemiddelde
afstand tot handmatige annotatie van respectievelijk 2.0 en 2.3mm.

De gemiddelde afstandsfout van het ASM model is hoog in vergelijking met re-
cente literatuur. Daarom onderzoeken we een aantal nabewerkingsmethoden om de
nauwkeurigheid te verhogen.

De eerst stap, is het filteren van CBCT data met een geoptimaliseerd rand bescher-
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mend anisotroop diffusie filter. Dit filter verwijderd ruis in de scan terwijl het de
uit bot bestaande randen van het mandibular kanaal verduidelijkt. De tweede opti-
malisatie methode is een 3D snake [55] [56]. Deze optimaliseert het door het ASM
verkregen oppervlakte van het bot. In ons geval hebben we erg weinig training scans,
daarom is het onmogelijk voor onze ASM methode om all mogelijke variaties tussen
mandibula botten te leren kennen. Een snake is een vervormbaar model, wat ver-
vormd onder druk van interne energieën zoals buig energie, en externe energie zoals
randen in de scan. Met de snake verbeteren we de oppervlakte beschrijving die we met
de ASM hebben verkregen. Resulterend in een gemiddelde Dice coëfficiënt van 0.8.
Als laatste optimalisatie gebruiken we fast marching. Deze methode vindt de donker-
ste tunnel door de mandibula, wat vaak gelijk is aan de locatie van het mandibular
kanaal. Maar omdat in onze data het contrast tussen kanaal en omgeving erg laag is,
gebruiken we eerst een circulair convolutie filter om de grijswaarden in het kanaal te
verlagen. We limiteren fast-marching tot de binnenkant van het bot, door alle pixels
buiten het bot een hoge grijswaarde te geven. Hiervoor gebruiken we de botvorm
die we eerder met behulp van de ASM hebben verkregen. De afstand tussen expert
segmentatie en automatisch segmentatie van het mandibular kanaal, neemt niet af en
blijft gemiddeld 2.3mm.

We breiden ook de AAM methode uit, door de mandibula AAM te gebruiken als
initialisatie van een AAM van alleen het mandibular kanaal. Door het spiegelen van
de kanalen krijgen we twee keer zoveel data sets. Deze kanaal AAM blijkt sommige
al goede resultaten te verbeteren maar verslechterd de andere kanaal lokalisatie re-
sultaten. Als laatste testen we ook een AAM methode waarin we pixels dicht bij
het kanaal een grotere invloed geven dan de andere mandibula model pixels. Dit
blijkt goed te werken en we verkrijgen een gemiddelde afstandsfout van 1.88mm en
gemiddelde STD van 1.05mm.

Conclusie, onze ASM en AAM methode presenteren beter op het gebied van
mandibular kanaal lokalisatie dan LK tracking, B-spline en demon registratie meth-
oden. De nauwkeurigheid, van de ASM methode op het gebied van bot segmentatie
kan worden verhoogd door een snake te gebruiken na het ASM model. Fast marching
verhoogt alleen de nauwkeurigheid van scans waarin het kanaal al redelijk nauwkeurig
was gelokaliseerd, en verlaagd de nauwkeurigheid van matig gelokaliseerde kanalen.
Onze uitgebreide AAM methode heeft een gemiddelde afstandsfout van 1.88mm wat
hoger is dan het verschil tussen experts 1.3mm [102] en slechter dan het beste resultaat
in literatuur met een nauwkeurigheid van 0.7mm.

De belangrijkste reden voor de lage nauwkeurigheid, is waarschijnlijk het kleine
aantal training scans, en het lage contrast tussen kanaal en omgeving als gevolg van
een lage CT dosis. De nauwkeurigheid van de gëıntroduceerde ASM en AAM mod-
ellen kunnen waarschijnlijk worden verhoogd naar 1.1mm [33], als er meer datasets
beschikbaar zijn.



148 SAMENVATTING



Dankwoord

Dit promotieonderzoek had niet tot stand kunnen komen zonder financiële steun van
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